
1

Untangling Blockchain: A Data Processing View
of Blockchain Systems

Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Member, IEEE, Gang Chen, Member, IEEE,

Beng Chin Ooi, Fellow, IEEE, and Ji Wang

Abstract—Blockchain technologies are gaining massive momentum in the last few years. Blockchains are distributed ledgers that

enable parties who do not fully trust each other to maintain a set of global states. The parties agree on the existence, values and

histories of the states. As the technology landscape is expanding rapidly, it is both important and challenging to have a firm grasp of

what the core technologies have to offer, especially with respect to their data processing capabilities. In this paper, we first survey the

state of the art, focusing on private blockchains (in which parties are authenticated). We analyze both in-production and research

systems in four dimensions: distributed ledger, cryptography, consensus protocol and smart contract. We then present BLOCKBENCH,

a benchmarking framework for understanding performance of private blockchains against data processing workloads. We conduct a

comprehensive evaluation of three major blockchain systems based on BLOCKBENCH, namely Ethereum, Parity and Hyperledger

Fabric. The results demonstrate several trade-offs in the design space, as well as big performance gaps between blockchain and

database systems. Drawing from design principles of database systems, we discuss several research directions for bringing blockchain

performance closer to the realm of databases.

✦

1 INTRODUCTION

Blockchain technologies are taking the world by storm,
largely due to the success of Bitcoin [1]. A blockchain,
also called distributed ledger, is essentially an append-only
data structure maintained by a set of nodes which do not
fully trust each other. Nodes in the blockchain agree on an
ordered set of blocks, each containing multiple transactions,
thus the blockchain can be viewed as a log of ordered trans-
actions. In the database context, blockchain can be viewed
as a solution to distributed transaction management: nodes
keep replicas of the data and agree on an execution order
of transactions. However, traditional databases assume a
trusted environment and employ well known concurrency
control techniques [2], [3], [4] to order transactions. Block-
chain’s key property is that it assumes nodes behave in arbi-
trary (or Byzantine) manner. Being able to tolerate Byzantine
failure by design, blockchain offers stronger security than
incumbent database systems.

In the original design, Bitcoin’s blockchain stores coins
as the system states. For this application, Bitcoin nodes
implement a simple replicated state machine model which
moves coins from one address to another. Since then, block-
chain has grown beyond crypto-currencies to support user-
defined states and Turing complete state machine mod-
els. For example, Ethereum [5] enables any decentralized,
replicated applications known as smart contracts. More im-
portantly, interest from the industry has started to drive

• Tien Tuan Anh Dinh, Rui Liu, Ji Wang, Beng Chin Ooi are with the
Department of Computer Science, National University of Singapore,
Singapore.
E-mail: {dinhtta, liur, wangji, ooibc}@comp.nus.edu.sg

• Meihui Zhang is with Singapore University of Technology and Design,
Singapore.
E-mail: meihui zhang@sutd.edu.sg

• Gang Chen is with Zhejiang University.
E-mail: cg@zju.edu.cn

development of new blockchain platforms designed for
private settings where participants are authenticated. Block-
chain systems in such environments are called private (or
permissioned), as opposed to the early systems operating in
public environments (or permissionless) where anyone can
join and leave. Applications such as security trading and
settlement [6], asset and finance management [7], [8], bank-
ing and insurance [9] are being built and evaluated. These
applications are currently supported by enterprise-grade
database systems like Oracle and MySQL, but blockchain
has the potential to disrupt this status quo because it incurs
lower infrastructure and human costs [9]. In particular,
blockchain’s immutability and transparency help reduce
human errors and the need for manual intervention due
to conflicting data. Blockchain can help streamline business
processes by removing duplicate efforts in data governance.
Goldman Sachs estimated 6 billion saving in current cap-
ital market [9], and J.P. Morgan forecast that blockchains
will start to replace currently redundant infrastructure by
2020 [8].

Amid the growing commercial and academic interest, a
large number of blockchain systems have sprung up, each
claiming some unique capabilities. Both private and public
sector are clamoring to adopt blockchains, but they face
overwhelming choices. While challenging, it is important
to have a firm grasp on what the technology can and cannot
do. A quest for understanding blockchain must ultimately
answer the following questions:

1) What is a blockchain? Specifically, what are its
unique properties that benefit current and future
applications?

2) How do current blockchains differ from each other,
both qualitatively in the design and quantitatively
in their performance?

ar
X

iv
:1

70
8.

05
66

5v
1

 [
cs

.D
B

]
 1

7
A

ug
 2

01
7

2

3) What are the current challenges? And what do
future blockchains look like?

To answer these questions, in this paper, we start by
distinguishing two major classes of blockchain systems,
namely public and private blockchains. We then explain
four key technical concepts by which current systems can
be categorized: distributed ledger, cryptography, consensus
protocol and smart contract. Next, we describe BLOCK-
BENCH [10], our benchmarking framework for quantita-
tively evaluate and compare private blockchains. Using
BLOCKBENCH, we conduct comprehensive evaluation of
three major blockchains: Ethereum [5], Parity [11] and Hy-
perledger [12]. The results show that current blockchains’
performance is limited, far below what a state-of-the-art
database system can offer. Finally, we draw from our experi-
ence in building large-scale database systems several design
principles that can improve future blockchains.

In summary, our contributions are:

1) We provide an in-depth survey of blockchain sys-
tems. We discuss state of the art, and categorize
current systems along four dimensions: distributed
ledger, cryptography, consensus protocol and smart
contract.

2) We describe our benchmarking framework,
BLOCKBENCH, that is designed for understanding
performance of private blockchains against data
processing workloads.

3) We present a comprehensive evaluation of Eth-
ereum, Parity and Hyperledger. The results show
the limitation of blockchains as data processing
platforms. They identify several performance bot-
tlenecks, and therefore can serve as a baseline for
future blockchain research and development.

In the next section, we provide an overview of block-
chain systems, separating them into public and private
settings. Section 3 explains the four building blocks which
are used in Section 4 to categorize existing blockchains.
Section 5 describes BLOCKBENCH, followed by the evalu-
ation of three blockchains in Section 6. Section 7 discusses a
number of lessons learned from the performance study, and
how to bring design principles from databases to improve
blockchains. Section 8 concludes.

2 BLOCKCHAINS: PRIVATE VS. PUBLIC

A typical blockchain system consists of multiple nodes
which do not fully trust each other. Some nodes exhibit
Byzantine behavior, but the majority is honest. Together, the
nodes maintain a set of shared, global states and perform
transactions modifying the states. Blockchain is a special
data structure which stores historical states and transac-
tions. All nodes in the system agree on the transactions and
their order. Figure 1 shows the blockchain data structure,
in which each block is linked to its predecessor via a
cryptographic pointer, all the way back to the first (genesis)
block. Because of this, blockchain is often referred to as a
distributed ledger.

A transaction in a blockchain is the same as in traditional
databases: a sequence of operations applied on some states.
As such, the blockchain transaction requires the same ACID

PrevBlock

Transaction

roothash

Nonce

Transaction list

PrevBlock

Transaction

roothash

Nonce

block t block t+1

Transaction list

Fig. 1: Blockchain data structure. Transactions are packed
into blocks which are linked to previous blocks.

semantics. The key difference is the failure model under con-
sideration. Current transactional, distributed databases [13],
[14] employ classic concurrency control techniques such as
two-phase commit to ensure ACID. They can achieve high
performance, because of the simple crash failure model. In
contrast, the original blockchain design considers a much
hostile environment in which nodes exhibit Byzantine be-
havior. Under this model the overhead of concurrency con-
trol is much higher [15].

At a high level, a blockchain system can be categorized
as either public or private. In the former, any node can join
and leave the system, thus the blockchain is fully decentral-
ized, resembling a peer-to-peer system [16]. In the latter, the
blockchain enforces strict membership. More specifically,
there is an access control mechanism to determine who can
join the system. As the result, every node is authenticated
and its identity is known to the other nodes.

2.1 Public Blockchain

Bitcoin [1] is the most well known example of public
blockchains. In Bitcoin the states are digital coins (crypto-
currencies), and a transaction moves coins from one set of
addresses to another. Each node broadcasts a set of transac-
tions it wants to perform. Special nodes called miners collect
transactions into blocks, check for their validity, and start
a consensus protocol to append the blocks onto the block-
chain. Bitcoin uses proof-of-work (PoW) for consensus: only
a miner which has successfully solved a computationally
hard puzzle (finding the right nonce for the block header)
can append to the blockchain. PoW is tolerant of Byzantine
failure, but it is probabilistic in nature: it is possible that
two blocks are appended at the same time, creating a fork
in the blockchain. Bitcoin resolves this by only considering
a block as confirmed after it is followed by a number of
blocks (typically six blocks). This probabilistic guarantee
leads to security and performance issues: attacks have been
demonstrated by an adversary controlling only 25% of the
nodes [17], and Bitcoin transaction throughput remains very
low (7 transactions per second [18]).

Most public blockchain systems employ variants of PoW
for consensus. PoW works well in the public settings be-
cause it guards against Sybil attacks [16]. However, being

3

non-deterministic and computationally expensive, it is un-
suitable for applications such as banking and finance which
must handle large volumes of transactions in a deterministic
manner.

2.2 Private Blockchain

Hyperledger [12] is among the most popular private
blockchains. Since node identities are known in the pri-
vate settings, most blockchains adopt one of the protocols
from the vast literature on distributed consensus. Zab [19],
Raft [20], Paxos [21], PBFT [15] are popular protocols that
are in active use today. Hyperledger directly uses PBFT1,
while others like Parity [11], Ripple [6] and ErisDB [22]
develop their own variants. PBFT is a three-phase protocol.
In the pre-prepare phase, a leader broadcast a value to be
commit by other nodes. Next, in the prepare phase, the nodes
broadcast the values they are about to commit. Finally, the
commit phase confirms the committed value when more
than two third of the nodes agree in the previous phase.
PBFT is communication bound, but it achieves both safety
and liveness in partially synchronous networks. Besides
deterministic consensus, another key property of private
blockchains is that they support smart contracts which can
express highly complex transaction logics. These properties
are particularly desirable in business and financial systems.
Indeed, private blockchains evoke such interest from major
banking and financial institutions that some even claim that
they have the potentials to disrupt current practices in data
management [8], [9].

3 KEY CONCEPTS

Categorizing blockchains as public or private is useful
for identifying major characteristics of many blockchains.
However, understanding their subtle differences warrants a
finer taxonomy. This section introduces four underpinning
concepts, based on which a more detailed classification of
the systems can be obtained.

3.1 Distributed Ledger

A ledger is a data structure that consists of an ordered list
of transactions. For example, a ledger may record monetary
transactions between multiple banks, or goods exchanged
among known parties. In blockchains, the ledger is repli-
cated over all the nodes. Furthermore, transactions are
grouped into blocks which are then chained together. Thus,
the distributed ledger is essentially a replicated append-only
data structure. A blockchain starts with some initial states,
and the ledger records entire history of update operations
made to the states.

A system supporting distributed ledgers can be char-
acterized in three dimensions, as illustrated in Table 1.
First, the application built on top of the ledger determines
the data model of what being stored in the ledger. For
example, a crypto-currency application may adopt the user-
account model resembling traditional banking systems. On

1. Hyperledger has two main releases: v0.6.0 and v1.0.0-rc1. The
former supports PBFT, but the latter adopts a no-Byzantine consensus
protocol based on Kafka.

the other hand, a general-purpose blockchain may use low-
level model such as table or key-value. Second, the system
may have one or more ledgers which may be connected
to each other. A large enterprise, for example, may own
multiple ledgers, one for each of its departments: engi-
neering, customer care, supply chain, payroll, etc.. Third,
ledger ownership may vary from completely open to public
to strictly controlled by one party. Bitcoin, for example is
completely open, and as a consequence requires expensive
consensus protocol to identify who can update the ledger.
Parity [11], on the other hand, pre-determines a set of
owners who can write to the ledger simply by singing the
blocks.

3.2 Consensus

The content of the ledger reflects historical and current
states maintained by the blockchain. Being replicated, up-
dates to the ledger must be agreed on by all parties. In other
words, multiple parties must come to a consensus. Note that
this is not the case in many real-world applications such
as fiat currency, in which one entity (e.g. the bank or the
government) decides the updates.

One key property of a blockchain system is that the
nodes do not trust each other, meaning that some may
behave in Byzantine manners. The consensus protocol must
therefore tolerate Byzantine failures. The research litera-
ture on distributed consensus is vast, and there are many
variants of previously proposed protocols being developed
for blockchains [23]. They can be largely classified along
a spectrum. One extreme consists of purely computation
based protocols that use proof of computation to randomly
select a node which single-handedly decides the next op-
eration. Bitcoin’s proof-of-work (PoW) is an example. The
other extreme are purely communication based protocols
in which nodes have equal votes and go through multi-
ple rounds of communication to reach consensus. These
protocols, PBFT [15] being the prime example, are used in
private settings because they assume authenticated nodes.
In between these extremes are hybrid protocols which aim
to improve performance of PoW and PBFT. For instance,
Proof-of-Elapsed-Time (PoET) eliminates expensive mining
in PoW by leveraging trusted hardware such as Intel SGX.
Another example is Proof-of-Authority (PoA) [24] which
improves PBFT by pre-selecting a small set of trusted nodes
that vote among themselves to reach consensus. Similarly,
Stellar [25] and Ripple [6] improve PBFT by executing
consensus in smaller networks.

3.3 Cryptography

Blockchain systems make heavy use of cryptographic tech-
niques to ensure integrity of the ledgers. Integrity here
refers to the ability to detect tampering of the blockchain
data. This property is vital in public settings where there
is no pre-established trust. For example, public confidence
in crypto-currencies like Bitcoin, which determines values of
the currencies, is predicated upon the integrity of the ledger;
that is the ledger must be able to detect double spending.
Even in private blockchains, integrity is equally essential
because the authenticated nodes can still act maliciously.

4

TABLE 1: Examples of distributed ledgers.

Data Model Number of ledgers Owner Example
Accounts One Administrator Traditional ledgers used in financial institutions.

Assets Many Group of users
Private ledger used within a financial institu-
tion, or between small groups of financial orga-
nizations, e.g. global financial services.

Coins or accounts One Any user Crypto-currencies like Bitcoin or Ethereum.

There are at least two levels of integrity protection. First,
the global states are protected by a hash (Merkle) tree whose
root hash is stored in a block. Any state change results
in a new root hash. The tree’s leaves contain the states,
the internal nodes contain the hashes of their children. For
instance, Hyperledger v0.6 uses a bucket hash tree, in which
states are grouped (by hashing) into a pre-defined number
of buckets. Ethereum, on the other hand, employs a Patricia-
Merkle tree which resembles a trie and whose leaves are
key-value states. Second, the block history is protected, that
is the blocks are immutable once they are appended to the
blockchain. The key technique is to link the blocks through
a chain of cryptographic hash pointers: the content of block
number n + 1 contains the hash of block number n. This
way, any modification in block n immediately invalidates
all the subsequent blocks. By combining Merkle tree and
hash pointers, blockchain offers a secure and efficient data
model that tracks all historical changes made to the global
states.

Blockchain’s security model assumes the availability
of public key cryptography. Identities, including user and
transaction identities, are derived from public key certifi-
cates. Secure key management, therefore, is essential to any
blockchains. As in other security systems, losing private
keys means losing access. But in blockchain applications
such as crypto-currencies, losing the keys has direct and
irrevocable financial impact. We discuss in Section 4.2 dif-
ferent schemes for key and identity management.

There exist many research systems that extend the orig-
inal blockchain design with novel and complex crypto-
graphic protocols. They aim to improve security and per-
formance with esoteric techniques such as zero-knowledge
proofs, group signatures and trusted hardware. We discuss
them in greater detail in Section 4.2.

3.4 Smart Contracts

A smart contract refers to the computation executed when
a transaction is performed. It can be regarded as a stored
procedure invoked upon a transaction. The inputs, outputs
and states affected by the smart contract execution are
agreed on by every node.

All blockchains have built-in smart contracts that im-
plement their transaction logics. In crypto-currencies, for
example, the built-in smart contract first verifies transaction
inputs by checking their signatures. Next, it verifies that
the balance of the output addresses matches that of the
inputs. Finally, it applies changes to the states. In the rest
of the paper we do not refer to such built-in logics as smart
contracts. Instead, we only consider smart contracts that can
be defined by users.

One way to characterize a smart contract system is by
its language. At one extreme, Bitcoin provides fewer than

contract Doubler {

struct Partitipant {

address etherAddress;

uint amount;

}

Partitipant[] public participants;

uint public balance = 0;

...

function enter() {

...

balance+= msg.value;

...

if (balance >

2*participants[payoutIdx].amount) {

transactionAmount = ...

participants[payoutIdx].

etherAddress.send(transactionAmount);

...

}

}

...

}

Fig. 2: An example of Ethereum smart contract, written in
Solidity, which implements a pyramid scheme.

200 opcodes from which users can write stack-based scripts.
For example, the following script verifies if 2 out of 3 valid
signatures are available.

OP_2 <Pub1> <Pub2> <Pub3> OP_3 OP_CHECKMULTSIG

At the other extreme, Ethereum smart contracts can specify
arbitrary computations, i.e. they are Turing complete code.
Figure 2 shows a snippet of a real smart contract running
on Ethereum. It implements a pyramid scheme: users send
money to this contract which then pays interests to early
participants. The contract has its own states, namely the list
of participants, and exports a function called enter. A user
invokes the contract by sending his money through a trans-
action. When executed, the contract can access the input
address (user account) via msg.sender and the transaction
value via msg.amount. It updates the accumulated balance,
computes the interest for each participants. Finally, payment
is made by invoking etherAddress.send.

In between the two extremes are smart contract sys-
tems that offer more expressiveness than Bitcoin’s op-
codes, but they reject Turing-completeness. Kadena [26]
and BigchainDB [27] support contracts with complex, but
constrained semantics so that they can be formally checked
for safety.

Another way to categorize smart contract systems is by
their runtime environments. Most systems execute smart
contracts in the same runtime as the rest of the blockchain
stack. We refer to them as employing native runtimes. For
example, Kadena parses contracts written in its Haskell-like

5

language and executes them directly as Haskell programs.
Ethereum, on the other hand, comes with its own virtual
machine for executing Ethereum bytecodes. Hyperledger,
opting for portability, employs Docker containers to execute
its contracts.

4 STATE OF THE ART

In this section we compare current blockchains using the
four concepts discussed in Section 3. We explain their design
in more detail and highlight their subtle differences. We also
discuss research problems that are being tackled.

A list of blockchains and their properties are shown
in Table 2. Major systems are included, but we stress that
the list is not exhaustive, especially given the growing
commercial and academic interest in blockchains. Systems
shown in italics are either no longer in active development,
or are still in initial phases of development. For examples,
Hydrachain [34] codebase was last updated about 8 months
ago at the time of writing, and IOTA’s current codebase
consists of only a reference implementation2. The table has
no column for cryptography, since all systems (except for
ZCash) employ standard techniques described in Section 3.
Novel cryptographic protocols that are not yet integrated
are discussed in Section 4.2.

4.1 Distributed Ledger

Recall that a system supporting distributed ledgers is
characterized by its target applications, by the number of
ledgers, and by the ledger ownership. In the following,
we group the systems listed in Table 2 by their target
applications.

Crypto-currency

The most successful adoption of blockchain technology is
crypto-currency. In the wake of Bitcoin’s success, multiple
competing currencies appear. Most of these alternative cur-
rencies (or alt-coins) such as Litecoin or Dodgecoin, adopt
similar data models to Bitcoin’s. Ethereum, departs from
Bitcoin’s transaction-based model and instead implements
an account-based model. The nature of currency applica-
tions requires that the ledger must be open and the system
maintains only one ledger.

Digital assets

Crypto-currency is one instance of digital assets — pieces
of data with attached real-world values. Unlike crypto-
currencies which are created on and derive their values
directly from the blockchains, digital assets are often issued
by real world entities and blockchains are merely a medium
to record their existence and exchanges. Multichain [32],
BigchainDB and Corda offer ledgers for storing and tracking
asset history. Like Bitcoin, their data models are transaction-
based which are centered around assets. These systems
target private settings, in which multiple organizations can
spin up a network to trade assets among each other. The
organizations are the ledger owners, and it is common to
have more than one ledger among them. Stellar, Ripple and

2. As many other blockchain projects do, IOTA is raising fund for
development via token sale.

IOTA issue their own assets (tokens) and offer their ledgers
as a medium of exchange or a platform for micro-payment.
IOTA, in particular, allows for zero-fee micropayment via its
tokens, which makes the ledger useful for exchanges among
IoT devices. The ledgers in these systems adopt account-
based data models. One ledger exists per system and it is
open; that is anyone can buy tokens and take part in the
exchanges.

General applications

Going beyond crypto-currency and asset management,
some ledgers support running general, user-defined com-
putations (or smart contracts). Ethereum and its derivatives,
namely Hydrachain, Quorum, Monax, Parity and Dfinity let
users write arbitrary business logics executed on top of the
ledger. For example, Ethereum contracts range from simple
crowdfunding campaigns to complex investment funds like
the DAO [43]. Dfinity has a special type of contract — the
governance contract — that enforces real-world regulations
on Ethereum-like blockchains. Hyperledger and its close
cousin Sawtooth Lake likewise support running Turing-
complete code. They offer key-value data model, with which
the applications can create and update key-value tuples on
the blockchain. Kadena and Tezos restrict how powerful the
applications can be by devising their own languages which
are not Turing complete but can be formally verified. Tezos
data model is account-based, whereas Kadena’s is based on
table. In particular, Kadena applications operate on key-row
structures with schemas, versions and column history.

4.2 Cryptography

Identity management

A user in a blockchain is uniquely identified by her public
key certificate. In public settings, the user first generates
a key pair (the default option being ECDSA based on the
Secp256k1 elliptic curve), then derives the identity as the
hash of the public key. This hash serves as a transaction
address or an account number in crypto-currencies systems.
To claim ownership of the transaction output or of the
account, the user signs transactions with the corresponding
private key. In private settings, there is an additional access
control layer. Hyperledger separates this layer from the
blockchain, in the form of a membership provider service
and a certificate authority service. The administrator can
implement arbitrary policies with these services to control
who gets access to the blockchain. Signed requests sent to
Hyperledger are first checked against these services before
processed by the next (consensus) component. Multichain
offers a simpler model with a fixed number of global per-
missions, while the remaining systems provide little detail
of their protocols.

The problem of managing user keys is the same in
private blockchains as in typical enterprise systems, thus
existing solutions can be readily integrated. In public
blockchains, however, the sheer scale and monetary impacts
of losing private keys calls for more secure and more usable
protocols. Bitcoin, in particular, embodies the challenges, as
Bitcoin users themselves are tasked with managing large
numbers of keys which are refreshed on new transac-
tions. Eskandari et al. [44] evaluated six approaches for

6

TABLE 2: Comparison of blockchain systems. Ones in italics are deemed inactive or at early phases of development.

Application
Smart contract

execution
Smart contract language Data model Consensus

Hyperledger
v0.6.0 [28]

General
applications

Dockers Golang, Java Key-value PBFT

Hyperledger
v1.0.0 [29]

General
applications

Dockers Golang, Java Key-value
Ordering service

(Kafka)

Bitcoin Crypto-currency Native Golang, C++
Transaction-

based
PoW

Litecoin [30] Crypto-currency Native Golang, C++
Transaction-

based
PoW (memory)

ZCash [31] Crypto-currency Native C++
Transaction-

based
PoW (memory)

Ethereum [5]
General

applications
EVM Solidity, Serpent, LLL Account-based PoW

Multichain
[32]

Digital assets Native C++
Transaction-

based
Trusted validators

(round robin)

Quorum [33]
General

applications
EVM Golang Account-based Raft

HydraChain
[34]

General
applications

Python, EVM Solidity, Serpent, LLL Account-based
Trusted validators

(majority)
OpenChain

[35]
Digital assets - - Transaction-based Single validator

IOTA [36] Digital assets - - Account-based
IOTA’s Tangle

Consensus
BigchainDB

[27]
Digital assets Native Python, crypto-conditions

Transaction
based

Trusted validators
(majority)

Monax [22]
General

applications
EVM Solidity Account-based Tendermint [37]

Ripple [6] Digital assets - - Account-based Ripple consensus
Kadena [26] Pact applications Native Pact Table ScalableBFT [38]
Stellar [25] Digital assets - - Account-based Stellar consensus

Dfinity [39]
General

applications
EVM Solidity, Serpent, LLL Account-based Threshold relay

Parity [11]
General

applications
EVM Solidity, Serpent, LLL Account-based

Trusted validators
(round robin)

Tezos [40]
Michaleson
applications

Native Michaleson Account-based Proof of Stake

Corda [41] Digital assets JVM Kotlin, Java
Transaction-

based
Raft

Sawtooth
Lake [42]

General
applications

Native Python Key-value Proof of elapsed time

Bitcoin key management (or wallet): local storage, pass-
word protected storage, offline storage, air-gapped storage,
password-derived keys, and hosted storage. The authors
found that none of these approaches is satisfactorily usable,
due to misuse of metaphors to traditional currencies, and
also due to confusing abstractions.

Trusted hardware

Recent distributed systems are leveraging trusted hardware
such as Intel SGX and ARM TrustZone to improve perfor-
mance at a slight cost of security [45], [46]. Sawtooth Lake
proposes proof of elapsed time (PoET) as an efficient re-
placement for proof-of-work. TownCrier [47] employs SGX
to implement a trusted party for vetting external contents
and importing them to the blockchain. These systems are
based on a trust model that is weaker than that of a
purely cryptographic system. In particular, their security
is dependent upon a trusted computing base (TCB) that is
running inside the trusted hardware. Smaller TCBs mean
better security.

All systems based on trusted hardware rely on remote
attestation protocols. A key pair, called Endorsement Key
(EK), is burnt into each device during manufacturing. Such
a key pair serves as the root of trust, from which other short-

term keys are derived. Before a piece of code is loaded,
the hardware measures it by hashing the code content and
signing it with one of the keys. The signed measurement
together with the key certificate attest to a remote party
what is being run in the local device. This protocol requires
a certificate authority that maintains and endorses a list of
known certificates and a list of revoked certificates. Highly
complex attestation schemes, for example direct anonymous
attestation [48], offer hardware anonymity without a certifi-
cate authority.

Transaction privacy

Most blockchains are designed to protect transaction in-
tegrity, but they do not consider transaction privacy. A
blockchain is said to have transaction privacy when (1)
transactions cannot be linked from one to another, and (2)
the transaction content is known only to its participants.
In private settings, complete transparency of transaction
history may not be a problem. Either transparency is desir-
able for the applications, such as financial auditing, or it is
straightforward to add an access control layer to protect the
blockchain data. In public settings, on the other hand, the
need for transaction privacy is driven by two factors. First,
deanonymization attacks have successfully recovered the

7

underlying structure of the Bitcoin network [49], and even
linked Bitcoin addresses to real-world identities [50]. Sec-
ond, transaction linkability can undermine the currency’s
fungibility, rendering some coins more valuable than others
due to their histories.

Zerocoin [51] is the first blockchain providing transac-
tion unlinkability. It extends Bitcoin to allow for trading
between bitcoins and special coins called zerocoins. Ze-
rocoin essentially implements a cryptographic mixer that
hides linkability between zerocoins and the corresponding
bitcoins. Each zerocoin is a cryptographic commitment to
two random values (s, r). When redeeming a zerocoin, the
owner reveals s as the proof that the coin has not been spent,
and a zero-knowledge proof of r. Transaction unlinkability
is derived from the fact that the coin being redeemed can be
any of the many unspent zercoins.

Zerocash [31] extends Zerocoin by improving efficiency
of the latter’s cryptographic operations. It functions as a
stand-alone blockchain, as opposed to Zercoin being an ex-
tension of Bitcoin. Transactions in Zerocash, including split
and merge transactions, are fully private. They are based on
complex zero-knowledge proofs which only reveal the fact
that there exists unredeemed coins whose sum is a specific
value. Both Zerocoin and Zerocash are implemented using
zkSNARK [52] and carry large overheads due to the un-
derlying zero-knowledge protocols. Zerocash, for instance,
requires a trusted party to securely create and distribute
some public parameters whose sizes are in hundreds of
megabytes.

Advanced signatures

Bitcoin supports multi-signatures, in which a transaction
can be redeemed when at least t out of n valid signatures
are available. Multi-signatures are resilient against corrupt
individuals by virtue of spreading the decryption or singing
capabilities to a group of users. Lightning Network [53],
an extension of Bitcoin with near-instant payment con-
firmation, relies on multi-signatures to first deposit some
mutual funds on the blockchain. Once confirmed, payments
from the funds can happen outside of the blockchain with
immediate confirmation. Finally, the funds can be closed
with corresponding transactions signed with all the required
signatures. Extensions of Bitcoin multi-signature scheme can
be built directly on top of ECDSA [54]. More advanced
schemes, e.g. [55], [56], can be employed (albeit not without
major changes in the current design).

Byzcoin [57] uses a group signature scheme called
Cosi [58] to reduce communication overhead in PBFT. Cosi
involves four rounds of communication at the end of which
a collective signature is generated and verified by all mem-
bers of the group. The signature is structured as a tree
of Schnorr signatures. It significantly reduces the size of
messages broadcast in the network during the prepare and
commit phase of PBFT, because each node no longer needs
individual signatures from all the other for verification.

4.3 Consensus

Recall that there is a spectrum of consensus protocols be-
hind blockchain systems, starting from purely computation
bound like PoW to purely communication bound like PBFT.

Table 3 summarizes key properties of the major protocols
which we now explore in detail.

Proof of Work variants

All PoW protocols require miners to find solutions to crypto-
graphic puzzles based on cryptographic hashes. Specifically,
the solution is a random nonce n such that:

H(n‖H(b)) < t

for a cryptographic hash function H , a threshold t and
the current block content b. The original protocol imple-
mented in Bitcoin uses SHA-256 as the hash function.
The availability of custom hardware (ASIC) that speeds
up hash computation prompts other crypto-currencies to
adopt memory-hard hash functions. Ethereum uses Dagger-
Hashimoto function, Litecoin and Dodgecoin use scrypt,
and ZCash uses Equihash function. These functions are
resistant to ASIC, as they demand large investment in
memory, but are easy to verify.

How fast a block is created is dependent on how hard
the puzzle is. Bitcoin sets t to a value equivalent of 10
minutes per block. Litecoin, Dodgecoin and ZCash decrease
t to achieve lower average block time to several minutes.
t cannot be arbitrary small because it leads to unnecessary
forks in the blockchain. Forks not only lead to wastage of
resources but have security implication since they make it
possible to double spend. Ethereum adopts GHOST [72]
protocol which helps bring down block generation time to
tens of seconds without compromising much security. In
GHOST, the blockchain is allowed to have branches as long
as the branches do not contain conflicting transactions.

Proof of Stake

PoW mining is hugely expensive. The process is partic-
ularly energy intensive, and has been estimated to con-
sume enough electricity to power a small country like
Denmark [73]. PoS is proposed to substantially reduce the
cost of mining. Unlike Ethereum’s GHOST, PoS maintains
a single branch but changes the puzzle’s difficulty to be
inversely proportional to the miner’s stake in the network.
A stake is essentially a locked account with a certain balance
representing the miner’s commitment to keep the network
healthy. Let s be the function that returns the stake, then a
miner M can generate a new block by solving the puzzle of
the following form:

H(n‖H(b)) < s(M).t

It can be seen that the greater the stake s(M), the easier it is
to find n.

Peercoin, forked from Bitcoin, is among the first systems
with PoS. It bootstraps by running PoW to generate coins.
The function s(.) in Peercoin takes a coin C as input and
returns C.age(C) where age(C) is the coin’s age. Nxt [74],
another PoS system, bootstraps by selling its tokens. The
function s(.) in Nxt considers both the miner’s balance and
the elapsed time from the last block. The longer it is since
the last block, the easy it is to solve the puzzle. In particular:

s(M, bh) = bal(M).age(bh−1)

8

TABLE 3: Comparison of consensus protocols.

Consensus Protocol Network Settings Description

PBFT-based Private

Hyperledger uses the original PBFT [15]. Tendermint [37] en-
hances it by assigning unequal weights to votes. Other variants
include Scalable BFT [59], Parallel BFT [60], Optimistic BFT [61],
etc.

Stellar Federated
Stellar network [62] proposes its own consensus protocol where
the nodes form intersecting groups (federates). Consensus is
agreed in each group, then propagated to the rest of the network.

Ripple Federated
Ripple payment system [6] proposes a variant of PBFT where the
nodes belong to intersecting groups, and in each group there is a
large majority of non-Byzantine nodes.

Proof-of-Work (PoW) Public
Bitcoin uses pure proof-of-work, which leads to scalability issues.
Bitcoin-NG [63], Byzcoin [57] separate leader election from trans-
action validation in PoW, thus increase the overall performance.

Proof-of-Stake (PoS) Public

Tendermint [37] uses PoS, in which a node’s ability to create new
block is determined by its stake in the blockchain, e.g. the amount
of currencies it owns [64]. A set of high-stake owners uses another
consensus mechanism, which is usually faster than PoW, to reach
agreement on a new block.

Threshold Relay Public

Dfinity [39] proposes threshold relay in which nodes form random
group based on a public verifiable random function (Byzcoin [57]
and Elastico [65] adopt similar approaches). The nodes in the
group create a new block by signing it using threshold signature.

Proof-of-Authority (PoA) Private

Parity [11] uses PoA, in which some pre-defined nodes are consid-
ered trusted authorities and they can propose the next blocks. It
then uses round-robin scheduling to assign every authority node
a time window during which it can propose blocks.

Proof-of-Burn (PoB) Public

Slimcoin [66] uses PoB, in which a node destroys some base
currencies it owns in another blockchain in order to get a chance
of proposing a new block. Slimcoin supports PoB based on
Peercoin [67].

Proof-of-Elapsed Time (PoET) Private

Sawtooth [42] uses PoET, in which each node runs a trusted
hardware, for example Intel SGX [68], that generates random
timers. The first node whose timer has expired can propose the
next block.

Others Public
Other protocols based on PoW are of the form proof-of-X, for
examples: Proof-of-Activity [69], Proof-of-Space [70], Proof-of-
Luck [71], etc.

where bh is the current block at height h, bal(M) returns
how many coins in M ’s account, and age returns how much
time has passed since the creation of a block at a certain
height.

Ethereum’s upcoming PoS protocol is implemented as
a smart contract. Referred to as Casper, it allows miners
to become validators by depositing Ethers to the Casper
account. The contract then picks a validator to propose
the next block according to the deposit amount. Its unique
feature, however, is to force validators to behave correctly
or else risk losing the entire deposit. In particular, each
validator places a bet on whether a certain block will be
confirmed in the future. If the block is confirmed, the
validator gets a small reward. But if it is not, the validator
loses its deposit. This mechanism avoids the nothing-at-stake
problem in which validators can propose blocks in different
branches. Tezos implements a simplified version of Casper
in which the nodes buy in to become authorities which can
then approve changes to the underlying blockchain. Tezos
aims to provide an amendable blockchain in which soft
forks and hard forks are inherent features of the blockchain.

PBFT variants

PoW suffers from non-finality, that is a block appended
to a blockchain is not confirmed until it is extended by
many other blocks. Even then, its existence in the block-
chain is only probabilistic. For example, eclipse attacks on

Bitcoin [75] exploit this probabilistic guarantee to allow
double spending. In contrast, the original PBFT protocol [15]
is deterministic. Implemented in the earlier version of Hy-
perledger (v0.6), the protocol ensures that once a block is
appended, it is final and cannot be replaced or modified. It
incurs O(N2) network messages for each round of agree-
ment where N is the number of nodes in the network. In
practice, however, the original protocol scales poorly and
collapses even before reaching the network limit [76]. We
observe the same scalability issues in our evaluation of
Hyperledger with BLOCKBENCH.

Tendermint proposes a small modification on top of
PBFT. Instead of each node having an equal vote, in Ten-
dermint each node may have different voting power, pro-
portional to their stake in the network. To reach agreement
in Tendermint it is necessary to only gather over 2/3 of the
total voting power. This may be cheaper than waiting for
2/3 of the network to response when there is a small number
of nodes with high stakes.

Recent works on improving PBFT have mainly focused
on its performance. Zyzzyva [77] optimizes for normal
cases (when there are no failures) via speculative execution.
XFT [78], assumes a network less hostile than purely Byzan-
tine, and demonstrates better performance by reducing the
number of network messages. HoneyBadger [79], on the
other hand, focuses on improving security under asyn-
chronous networks. It employs a randomized agreement pro-

9

tocol which achieves safety with overwhelming probability
even under network asynchrony. By optimizing the network
layer, it is shown to outperform PBFT even when the net-
work is synchronous. Both Zyzzyva, XFT and HoneyBadger
hold great promise, but they have not been integrated into
any blockchains.

Trusted hardware

Most overheads of PoW and PBFT can be attributed to
the assumption that nodes behave in Byzantine manners.
The availability of Intel SGX [80] or ARM TrustZone [81],
however, makes it possible to relax the trust model in the
Byzantine settings. In particular, a node equipped with
trusted hardware can be reliably checked for certain proper-
ties, for example, that it is running a specific software.

Sawtooth Lake leverages SGX to replace PoW with a
more efficient protocol called PoET. Specifically, PoET runs
inside an enclave protected by SGX. It starts by taking a
block number as input and generating a timer of a random
duration t. Afterward, it can produce certificates indicating
how much time has passed since the timer starts. A node
whose PoET generates the smallest t can append the block
when the timer expires. In particular, the node attaches its
PoET certificate to the block, and as long as t is smaller than
what generated by any other node the block is accepted.

A2M [82] and Hybster [83] both exploit trusted hardware
to reduce the number of replicas needed to tolerate f failures
from 3f + 1 to 2f + 1. This means an N -node network
can now tolerate up to N/2 adversarial nodes, as opposed
to N/3 adversarial nodes in the original PBFT. A2M’s and
Hybster’s safety are dependent on the trusted code bases
(TCBs) that implement simple functions: a log data structure
in the former and a monotonic counter in the latter.

Federated

Despite numerous improvements to the original protocol,
PBFT-based consensus remains communication bound, thus
it ultimately fails to scale beyond a certain number of nodes.
To overcome this hard limit without scarifying safety, Stellar
and Ripple adopt an approach that partitions the network
into smaller groups called federates. Each federate runs a lo-
cal consensus protocol among its members, which does not
run into scalability problems because of the small network
size. Local agreements are then propagated to the entire
network via nodes lying in the intersections of the federates.
Global consensus can be achieved under certain conditions.
For Stellar, the condition is that every two federates intersect
at non-Byzantine nodes. Ripple’s safety conditions are that
there is a large majority of honest nodes in every federate,
and that the intersection of any two federates contain at least
one honest node.

Both Stellar and Ripple assume federates are pre-defined
and their safety conditions can be enforced by a network
administrator. In a decentralized environment where node
identities are unknown, such assumptions do not hold.
Byzcoin [57] and Elastico [65] propose novel, two-phase
protocols that combine PoW and PBFT. In the first phase,
PoW is used to form a consensus group. Byzcoin imple-
ments this by having a sliding window over the blockchain
and selecting the miners of the blocks within the window.
Elastico [65] groups nodes by their identities that change

every epoch. In particular, a node identity is its solution to
a cryptographic puzzle. In the second phase, the selected
nodes perform PBFT to determine the next block. The end
result is faster block confirmation time at a scale much
greater than traditional PBFT (over 1000 nodes).

Similar to Byzcoin and Elastico, Dfinity [39] and Algo-
rand [84] select at each round a random set of nodes that
can propose blocks. Unlike the former, they dispense with
PoW and instead use verifiable random functions (VRFs) to
select the consensus group. In Dfinity, the VRF is based on
the threshold signature of the previous block. In Algorand,
it is based on a random seed published in the previous block
and the node’s secret key.

Non-Byzantine

The systems described so far in this section tolerate Byzan-
tine failures, rendering them attractive for public settings
and for private settings where the cost of engaging trusted
parties (for example, for escrowing assets) is high. Some
blockchains, however, assume trusted parties in order to
simplify their designs. These blockchains have no safety
guarantees when any of such parties behaves maliciously.

Openchain [35] relies on a single trusted party (called
validator) that determines the next block. Consequently, it is
most vulnerable to attacks as the validator is the single point
of failure. Multichain and Parity have more than one trusted
party which is referred to as authority in their systems. Each
authority is given a time slice, via round-robin scheduling,
during which it can append new blocks to the chain. This
simple proof-of-authority (PoA) protocol avoids single point
of failure while ensuring balanced workloads among the
authorities. HydraChain and BigChainDb also have multi-
ple authorities, but one authority cannot unilaterally decide
the next blocks. Instead, the block is decided via majority
voting. Quorum [33] employs Raft [20] as the consensus pro-
tocol among its authorities. Raft implements crash tolerant
state machine replication, which is an important building
block of modern distributed database systems. Using Raft,
Quorum is able to make safe progress even when some
authority nodes crash.

Corda’s consensus protocol is executed by a set of
trusted parties called notaries which check if a given transac-
tion has been executed before. By delegating this check to an
entity outside of the blockchain, Corda can justify using Raft
for consensus. Transactions in Corda are sent to the notaries
before being confirmed in the blockchain. The notaries then
use Raft to ensure that the transactions are replicated among
themselves and remain highly available despite crashes.

The latest release of Hyperledger (v1.0) outsources the
consensus component to Kafka — another building block of-
ten found in distributed database systems. More specifically,
transactions are sent to a centralized Kafka service which
orders them into a stream of events. Every node subscribes
to the same Kafka stream and therefore is notified of new
transactions in the same order as they are published. Since
there is only one Kafka service, the observed transaction
sequence is the same at every node.

Others

IOTA [36] uses its own consensus protocol called Tangle
in which the blocks form a direct acyclic graph (DAG) as

10

opposed to a chain. In addition, a block in Tangle consists
of only one transaction. When appended, the block must
approve two other blocks creating links to them in the DAG.
The block is confirmed when it is approved by many other
blocks. Targeting IoT environments, Tangle’s main goal is
efficiency and low-cost payment. Although its security has
not been rigorously analyzed, the low values of transactions
(micropayments) in Tangle could in practice discourage
Byzantine behavior.

Kadena [26] proposes an extension to Raft that handles
Byzantine failures. It introduces various techniques on top
of Raft, such as message signatures, client verification and
incremental hashing. However, like Tangle, it is unclear
whether the protocol guarantees safety and liveness.

4.4 Smart Contracts

Recall that a smart contract system can be characterized by
its language expressiveness or by its execution environment.
Except for Openchain, IOTA, Ripple and Stellar, all systems
listed in Table 2 let users customize transaction logics to suit
their applications. In the following, we group them by the
contract language expressiveness.

Scripts

Bitcoin provides approximately 200 opcodes, but many of
them are disabled in the latest implementation. Users can
write stack-based programs with the opcodes. The most
popular contracts in Bitcoin are related to multi-signatures.
One example is the escrow contract that requires 2 out of 3
signatures before a coin can be released. The language can
also implement bounty-hunting style contracts, for example,
one that releases the reward coins when the pre-image of a
hash value is found.

BigchainDB [27] adopts a more expressive language
called crypto-condition. Developed as part of the Interledger
Protocol project [85], crypto-condition allows specifying
complex boolean expressions over many types of signatures.
A crypto-condition script contains conditions and fulfillments
which are treated as inputs and output of the script. The
available conditions include timeout which enables time-
release contracts. Crypto-condition’s encoding is higher
level than Bitcoin opcodes, making it easy to express com-
plex logics.

Turing complete

Ethereum is among the first blockchains offering Turing-
complete smart contracts. Users write their contracts in
either Solidity, Serpent or LLC language, which then get
compiled to EVM bytecodes. EVM executes normal crypto-
currency transactions, and it treats smart contract bytecodes
as a special transaction. Specifically, each smart contract is
given its own memory to store local states. The memory is
exposed as a key-value storage, though Solidity provides
high-level data types such as map, array and composite
structures. Resources consumed during execution of the
contract, both in terms of CPU and memory, are tracked by
EVM and charged to the transaction sender’s account. EVM
also keeps track of intermediate state changes and reverse
them if there are insufficient funds to pay for the execution.

Hyperledger does not have its own bytecotes. Instead,
it runs its language-agnostic smart contracts inside Docker
containers. Specifically, a contract can be written in any
language, which is then compiled into native code and
packed into a Docker image. When the contract is uploaded,
each node starts a new container with that image. Invoking
the contract is done via Docker APIs. The contract can access
the blockchain states via two methods getState and putState
exposed by a shim layer. One benefit of Hyperledger is that
it supports multiple high-level programming languages like
Go and Java. However, its key-value interfaces with the
blockchain necessitates extra application logics for mapping
high-level data structures into key-value tuples.

Sawtooth Lake supports smart contracts in the form of
transaction families. Each family is a user-defined Python
class loaded into the ledger during start up. The contract
is executed in the native runtime environment as a normal
Python program.

One consequence of supporting Turing complete con-
tracts is that software bugs are all but inevitable. While
empowering, the Ethereum smart contract model receives
strong criticism because it directly exposes Ethers against
programming bugs. The security concerns indeed material-
ized in the DAO attack [43] in which the attacker stole $50M
worth of asset. The attack exploits a concurrency bug in the
DAO smart contract which allows one to repeatedly draw
more money than what is specified in the transaction. Such
bugs are inherent in a language like EVM which has weak
or no formal specifications of its semantics. OYENTE [86]
presents three major causes of security bugs: transaction
order dependencies, timestamp dependencies and mishan-
dled exceptions. It formalizes Ethereum semantics and pro-
poses a tool for checking bugs directly on EVM bytecodes.
The tool discovered over 8000 Ethereum contracts (worth
over $60M) with potential security bugs.

Like any other transactions on the blockchain, smart
contract executions are transparent. It means the inputs,
outputs and the states of the contract are visible to the
network. Hawk [87] extends Zerocash to provide transaction
privacy for smart contracts. The main challenge compared
to Zerocash lies in the arbitrary transaction logics, whereas
in Zerocash the logics are constrained by a small set of oper-
ations. Another challenge is to protect local states, which is
not applicable in Zerocash. Given a contract, Hawk compiles
it with zkSNARK to make it privacy preserving. Transaction
inputs and outputs are pre- and post-processed via Hawk to
hide the complex cryptographic details. Although the pro-
tocols incur large overhead both in time and space, Hawk
represents a practical cryptographic system that achieves
both transaction privacy and fairness.

Verifiable

Even before the DAO attack, some blockchains have rejected
the models that allow for unconstrained computations. The
languages of Kadena, Tezos and Corda are more powerful
than Bitcoin scripts, but they trade Turing completeness for
safety. Kadena’s language is a Lisp-like functional language
called Pact [26]. A Pact contract is stored in the ledger in
human readable form, which is then parsed and executed in
Ocaml. It is strongly typed and can be formally verified.
Similarly, Tezos’s stack-based language called Michelson

11

Smart contract

Block header

Transaction
roothash

Contract
roothash

Code

State
storage

input, output

Smart contract

Block header

Transaction
roothash

Contract
roothash

Code

State
storage

input, output

block t block t+1

StorageCPU Network

......

Crypto-currencyCrypto-currency Asset
management

Asset
management

Securities
settlement

Securities
settlement ...

Consensus

Execution
engine

Data
model

Application

Fig. 3: Blockchain software stack on a fully validating node.

Consensus

Data Model

Execution Engine

Application

PoW, PoS,
PBFT, etc.

Blocks
Transactions,
Indexing, etc.

Compilers, VM,
Dockers, etc.

Contracts
YCSB,
Smallbank,
etc.

 CPU-Heavy

Analytics,
IO-Heavy

Commits

BLOCKBENCH
workloads

Blockchain
layers

Fig. 4: Blockchain software layers and corresponding bench-
mark workloads.

comes with a strong type system and fully specified seman-
tics. As a result, Tezos contracts can be statically checked for
safety. In Corda, a contract is a sequence of pure functions
that do not modify the states. Because the functions are
merely constraints, the contract’s safety can be formalized
and verified.

5 BLOCKBENCH

The previous section has presented a thorough qualitative
analysis of existing blockchains. In this section, we describe
our benchmarking framework called BLOCKBENCH [10].
Designed for quantitative analysis of blockchains as
data processing platforms, the framework targets private
blockchains with Turing-complete smart contracts. BLOCK-
BENCH is open source [88] and contains data processing
workloads commonly found in database benchmarks.

5.1 Layers

BLOCKBENCH targets blockchains that function as data
processing platforms. Such a blockchain must have no re-
strictions on the application logics, thus it must support
Turing complete smart contracts. Figure 3 shows the logical
components of the blockchain software stack, from which
we refine the taxonomy described in Section 4 into four
concrete layers shown in Figure 4. For each layer there

are multiple BLOCKBENCH workloads for evaluating it
individually.

The consensus layer implements the consensus protocol.
The data model layer contains the structure, content and
operations on the blockchain data. The execution layer
includes details of the runtime environment for execut-
ing smart contracts. Finally, the application layer includes
classes of blockchain applications. Croman et. al. [18] pro-
posed to divide blockchain into several planes: network,
consensus, storage, view and side plane. While similar to
BLOCKBENCH’s four layers, the plane abstraction was
geared towards crypto-currency applications and did not
take into account the execution of smart contracts.

5.2 Implementation

BLOCKBENCH stack consists of a frontend interface for
integrating new benchmark workloads, a backend inter-
face for integrating new blockchains, and a driver for
driving the workloads. A new blockchain can be inte-
grated into the framework’s backend by implementing the
IBlockchainConnector interface. The interface contains
operations for deploying the smart contract application,
invoking it by sending a transaction, and for querying the
blockchain states. Ethereum, Parity and Hyperledger are the
current backends, while ErisDB (or Monax), Quorum and
Sawtooth Lake integration are under development. A new
benchmarking workload can be added by implementing
IWorkloadConnector interface3. The Driver takes as
input a workload and sends transactions to the blockchain
according to user-defined configurations (number of oper-
ations, number of clients, threads, etc.). It collects runtime
statistics which are used to compute five important metrics.

• Throughput: the number of successful transactions
per second. A workload can be configured with
multiple clients and threads per clients to saturate
the blockchain throughput.

• Latency: the response time per transaction. Driver
implements blocking transactions, i.e. it waits for one
transaction to finish before starting another.

• Scalability: the changes in throughput and latency
when increasing the number of nodes and number
of concurrent workloads.

• Fault tolerance: the changes in throughput and la-
tency during node failure. We simulate crashes, net-
work delays and random message corruptions.

• Security metrics: the ratio between the total number
of blocks included in the main branch and the total
number of confirmed blocks. The lower the ratio, the
less vulnerable the system is from double spending
or selfish mining.

5.3 Workloads

BLOCKBENCH comes with macro benchmark workloads
for evaluating the application layer, and micro benchmark
workloads for analyzing the lower layers. Smart contract
implementations of the workloads shown in Figure 4 are
available and can be readily deployed on Ethereum, Parity
and Hyperledger.

3. We assume that the smart contract implementing the workload’s
logic is already implemented and deployed on the blockchain.

12

Macro benchmark workloads

We port two popular database benchmark workloads into
BLOCKBENCH, namely YCSB and Smallbank. YCSB is
widely used for evaluating NoSQL databases, for which
we implement a simple smart contract which functions as
a key-value storage. The WorkloadClient is based on
the YCSB driver [89] which preloads each storage with a
number of records, and supports requests with different
ratios of read and write operations. For Smallbank [90], a
popular benchmark for OLTP workload, we implement a
smart contract that transfers money from one account to
another.

Besides database workloads, BLOCKBENCH also pro-
vides three other workloads based on real Ethereum con-
tracts. The first is EtherId, a popular contract implementing
a domain name registrar. The second is Doubler, the pyramid
scheme contract shown earlier in Figure 2. The third is
WavesPresale that implements a crowdfunding campaign via
digital token sales.

Micro benchmark workloads

For the consensus layer, BLOCKBENCH provides DoNoth-
ing workload in which the smart contract accepts a trans-
action as input and simply returns. Since the contract
execution involves minimal number of operations at the
execution and data model layer, the overall performance
will be determined by the consensus layer.

For the data model layer, BLOCKBENCH provides Ana-
lytics workload that is similar to an OLAP workload. In par-
ticular, it performs scan-like and aggregate queries whose
performance is determined by the system’s data model.
Specifically, there are two queries:

Q1: Compute the total transaction values committed between
block i and block j.

Q2: Compute the largest transaction value involving a given
state (account) between block i and block j.

For Ethereum and Parity, both queries can be implemented
via JSON-RPC APIs that return transaction details and ac-
count balances at a specific block. For Hyperledger, how-
ever, the second query must be implemented via a smart
contract (VersionKVStore), because Hyperledger has no
APIs for querying historical states. Figure 5 shows the con-
tract implementation in Hyperledger. To support historical
data lookup, the contract appends a counter to the key of
each account. To fetch a specific version of an account, the
key account:version is used. The latest version is stored
at the key account:latest. The contract also keeps keep
a CommitBlock value in the data field for every version
to point to the block number in which the current version
is committed. To fetch the balances of a given account in
a given block range, the contract scans all versions of this
account and returns the corresponding balance when the
version’s CommitBlock value is in the specified range.

Another workload for the data model layer stresses
the persistent storage. In particular, the IOHeavy workload
evaluates the blockchain’s IO performance by invoking a
contract that performs a large number of random writes and
random reads to the local states.

Finally, for the execution layer BLOCKBENCHprovides
the CPUHeavy workload. It measures the efficiency of the

type account_t struct {

Balance int

CommitBlock int

}

type transaction_t {

From string

To string

Val int

}

func Invoke_SendValue(from_account string,

to_account string, value int) {

var pending_list []transaction_t

pending_list = decode(GetState("pending_list"))

var new_txn transaction_t

new_txn = transaction_t {

from_account, to_account, value

}

pending_list = append(pending_list, new_txn)

PutState(’pending_list’, encode(pending_list))

}

func Query_BlockTransactionList(block_number int)

[]transaction_t {

return decode(GetState("block:"+block_number))

}

func Query_AccountBlockRange(account string,

start_block int, end_block int)

[]account_t {

version := decode(GetState(account+":latest"))

var ret []account_t

while true {

var acc account_t

acc = decode(GetState(account+":"+version))

if acc.CommitBlock >= start_block &&

acc.CommitBlock < end_block {

ret = append(ret, acc)

} else if acc.CommitBlock < start_block {

break;

}

version -= 1

}

return ret

}

Fig. 5: Code snippet from the VersionKVStore smart contract
for Analytics workload (Q1 and Q2).

execution layer for computationally heavy tasks by invoking
a contract that executes quick sort algorithm over a large
array.

6 EVALUATION

We selected Ethereum, Parity and Hyperledger for a com-
parative study using BLOCKBENCH. They occupy different
positions in the design space, and are considered the most
mature in terms of the codebase and user base. We used
the popular Go implementation of Ethereum, geth v1.4.18,
the Parity release v1.6.0. Unless otherwise specified, the
Hyperledger version is v0.6.0-preview. We set up a private
testnet for Ethereum and Parity by defining a genesis block
and directly adding peers to the miner network. For Eth-
ereum, we manually tuned the difficulty variable in the
genesis block to ensure that miners do not diverge in large
networks. For Parity, we set the stepDuration variable to
1. In both Ethereum and Parity, confirmationLength is
set to 5 seconds. The default batch size in Hyperledger is
500.

The experiments were run on a 48-node commodity clus-
ter. Each node has an E5-1650 3.5GHz CPU, 32GB RAM, 2TB

13

YCSB Smallbank
10

1

10
2

10
3

10
4

#
tx

/s

284 255

45 46

1273 1122

Throughput

Ethereum

Parity

Hyperledger

YCSB Smallbank
10

−1

10
0

10
1

10
2

10
3

s
e
c
o
n
d

92 114

3 4

38
51

Latency

Ethereum

Parity

Hyperledger

Fig. 6: Blockchain peak performance with 8 clients and
8 servers. The benchmark workload is YCSB. The perfor-
mance against Smallbank workload is similar.

hard drive, running Ubuntu 14.04 Trusty, and connected to
the other nodes via 1GB switch. For Ethereum, we reserved
8 cores out of the available 12 cores per machine, so that
the periodic polls from the client’s driver process do not
interfere with the mining process. Our main findings are as
follows:

• Hyperledger performs consistently better than Eth-
ereum and Parity across the benchmarks. But it fails
to scale up to more than 16 nodes.

• Ethereum and Parity are more resilient to node fail-
ures, but they are vulnerable to security attacks that
forks the blockchain.

• The main bottlenecks in Hyperledger and Ethereum
are the consensus protocols, but for Parity the bottle-
neck is caused by transaction signing.

• Ethereum and Parity incur large overheads in terms
of memory and disk usage. Their execution engine is
also less efficient than that of Hyperledger.

• Hyperledger’s data model is low level, but its flexi-
bility enables customized optimization for analytical
queries.

6.1 Macro benchmarks

This section discusses the performance of the blockchains
at the application layer, using YCSB and Smallbank bench-
marks.

Throughput and latency

Figure 6 shows the peak performance with 8 servers and 8
concurrent clients over the period of 5 minutes. We observe
that in terms of throughput, Hyperledger outperforms the
other two in both benchmarks. The gap between Hyper-
ledger and Ethereum is due to the difference in the con-
sensus protocols: one is based on PBFT while the other is
based on PoW. With 8 servers, the communication cost from
broadcasting messages is cheaper than block mining whose
difficulty is set at roughly 2.5s per block. The gap between
Parity and Hyperledger is not due to consensus protocols,
as Parity’s PoA protocol is expected to be simpler and more
efficient than both PoW and PBFT. Instead, we observe that
Parity processes transactions at a constant rate, and that it
enforces a maximum client request rate at around 80 tx/s.

YCSB Smallbank
10

1

10
2

10
3

10
4

10
5

#
tx

/s

284 255

45 46

1273 1122

142702

21596

Throughput vs. HStore

Ethereum

Parity

Hyperledger

H-Store

Fig. 7: Performance of the three blockchain systems versus
H-Store.

To put their performance in context, we compare the
three blockchains against a popular in-memory database
system, namely H-Store, using the YCSB and Smallbank
workload. Blockchains and databases do not necessarily
share the same design goal: the former are not designed
for general data processing, nor do the latter protect data
integrity against Byzantine failures. Nonetheless, we argue
that the comparison offers useful insights into the design
trade-offs and relative performance of the two systems. We
ran H-Store’s own benchmark driver and set the transaction
rate at 100,000 tx/s. Figure 7 shows at least an order of mag-
nitude gap in throughput and two order of magnitude in la-
tency. Specifically, H-Store achieves over 140K tx/s through-
put while maintaining sub-millisecond latency. The gap in
performance is due to the cost of consensus protocols. For
YCSB, for example, H-Store requires almost no coordination
among peers, whereas Ethereum and Hyperledger suffer the
overhead of PoW and PBFT. An interesting observation is
the overhead of Smallbank. Recall that compared to YCSB,
Smallbank consists of more complex transactions in which
multiple keys are updated in a single transaction. Smallbank
is simple but is representative of the large class of transac-
tional workloads such as TPC-C. We observe that in H-Store,
Smallbank achieves 6.6x lower throughput and 4x higher
latency than YCSB, which reflects the cost of distributed
transaction management. In contrast, the blockchains suffer
modest degradation in performance: 10% in throughput and
20% in latency. This is because each node in the blockchains
maintains the complete states, therefore it pays no overhead
in coordinating distributed transactions since the states are
not partitioned.

Scalability

We fixed the client request rate (320 requests per second
for Hyperledger, 160 requests per second for Ethereum and
Parity) and increased both the number of clients and the
number of servers. Figure 8 illustrates how well the three
systems scale to handle larger YCSB workloads. Parity’s
performance remains constant as the network size and
offered load increase, due to the constant transaction pro-
cessing rate at the servers. Interestingly, while Ethereum’s
throughput and latency degrade almost linearly beyond 8
servers, Hyperledger stops working beyond 16 servers.

14

12 4 8 12 16 20 24 28 32

#nodes

10
1

10
2

10
3

10
4

#
tx

/s

Throughput

Ethereum

Parity

Hyperledger

12 4 8 12 16 20 24 28 32

#nodes

10
−1

10
0

10
1

10
2

10
3

s
e
c
o
n
d

Latency

Ethereum

Parity

Hyperledger

Fig. 8: Performance scalability (with the same number of
clients and servers). The benchmark workload is YCSB.
The scalability against Smallbank is similar, except that
Hyperledger fails beyond 8 nodes instead of 16.

8 12 16 20 24 28 32

#nodes

0

200

400

600

800

1000

1200

1400

#
tx

/s

Throughput

Ethereum

Parity

Hyperledger

8 12 16 20 24 28 32

#nodes

0

20

40

60

80

100

120

140

160

180

s
e
c
o
n
d

Latency

Ethereum

Parity

Hyperledger

Fig. 9: Performance scalability (with 8 clients).

To understand why Hyperledger failed to scale beyond
16 servers and 16 clients, we examined the system logs and
find that the nodes never reached consensus on any batch of
transactions. We observe a large number of messages being
dropped even when there are fewer than 16 servers and
clients. Furthermore, the servers repeatedly triggered view
changes but never succeeded. At the client side, requests
took longer to return as time passed, suggesting that the
server or the network were saturated. Since the original
PBFT protocol guarantees both liveness and safety, we can
attribute this failure to scale to Hyperledger’s implementa-
tion. Further investigation reveals that it is indeed the case.

Hyperledger uses gRPC for communication between
servers. Each server keeps a separate message queue for
every other servers in the network. The queue size is defined
during initial setup (the default size being 1000 messages)
and the default behavior is to drop messages when the
queue is full. In the current design, both client requests
(transactions) and consensus messages (pre-prepare, pre-
pare, commit, view changes) are sent on the same channel,
that is they share the same queue. For large numbers of
concurrent clients and servers, the channels are dominated
by client requests, increasing the probability of consensus
messages being dropped. Without a sufficient number of
consensus messages, either a batch timer or a view-change

timer will expire. In the first case, the PBFT leader resends
messages of the current consensus round. In the second,
the servers start the view change phase which broadcasts
multiple rounds of consensus messages. As client requests
are still occupying the network channels, both consensus or
view change messages are dropped with high probability.
Consequently, the network gets stuck in perpetual attempts
to establish a stable view. The fact that PBFT is sensitive to
network conditions has been observed in the past [76].

We note that in its latest release (v1.0) Hyperledger has
replaced PBFT with a global ordering service. Implemented
using Kafka, this new consensus engine may offer higher
throughput than PBFT, but it offers no protection against
Byzantine failures.

The results so far indicate that scaling both the number of
clients and number of servers degrades the performance and
even causes Hyperledger to fail. We next examined the costs
of increasing the number of servers alone while fixing the
number of clients to 8. Figure 9 shows that the performance
becomes worse as there are more servers, meaning that the
systems incur some network overheads. For Hyperledger,
having more servers means more messages being exchanged
and higher overheads. In particular, to a confirm a batch of
transaction in a larger network, the leader in Hyperledger
needs to wait for larger sets of messages, therefore lowering
overall throughputs. We note that with a fixed number of
clients Hyperledger can scale up to 32 nodes, as oppose
to failing after 16 nodes as in Figure 8. This is because
with fewer clients, the message queues at each node are
not saturated with client requests and therefore consensus
messages are less likely to get dropped.

For Ethereum, even though it is computation bound,
it still consumes a modest amount of network resources
for propagating transactions and blocks to other nodes.
Furthermore, with larger network, the difficulty is increased
to account for the longer propagation delays. We observe
that to prevent the network from diverging, the difficulty
level increases at a higher rate than the number of nodes.
Thus, one reason for Ethereum’s throughput degradation is
due to network sizes. Another reason is that in our settings,
8 clients send requests to only 8 servers, but these servers
do not always broadcast transactions to each other (they
keep mining on their own transaction pool). As a result, the
network mining capability is not fully utilized.

6.1.1 Fault tolerance and security

To evaluate how resilient the systems are to crash failures,
we ran the systems with 12 and 16 servers, with 8 clients for
over 5 minutes, during which we killed off 4 servers at 250th

second. Due to space constraints, we only highlight key
findings here and refer readers to [10] for more details. First,
Ethereum is unaffected by the change, suggesting that the
failed servers do not contribute significantly to the mining
process. Second, Parity’s throughput is also unaffected. It is
because each node is given equal time slice during which it
can generate block, thus failing 4 nodes in Parity means
that the remaining 8 nodes are given bigger time slices.
Third , Hyperledger stops generating blocks after the failure
in the 12-server network, which is as expected because
the PBFT can only tolerate fewer than 4 failures in a 12-
server network. In the 16-server network, Hyperledger still

15

0 50 100 150 200 250 300 350 400

time (second)

0

100

200

300

400

500

#
b
lo

c
k
s

#Blocks generated

Ethereum-bc

Ethereum-total

Parity-bc

Parity-total

Hyperledger-bc

Hyperledger-total

Fig. 10: Blockchain forks caused by attacks that partitions
the network in half at 100th second and lasts for 150 sec-
onds. X-total means the total number of blocks generated in
blockchain X, X-bc means the total number of blocks that
reach consensus in blockchain X.

generates blocks but at a lower rate, which were caused by
the remaining servers having to stabilize the network after
the failures by synchronizing their views.

We next simulated the attack that could make the
blockchains vulnerable to double spending. The attack es-
sentially creates network partition at 100th second that lasts
for 150 seconds. We set the partition size to be half of
the original4. Figure 10 compares the vulnerability of the
three blockchains with 8 clients and 8 servers. Recall that
vulnerability is measured as the differences in the number
of total blocks and the number of blocks on the main branch.
We refer to this as ∆. Both Ethereum and Parity fork at
100th seconds, and ∆ increases as time passes. For the
attack duration, upto 30% of the blocks are generated in the
forked branch, meaning that the systems are highly exposed
to double spending or selfish mining attacks. When the
partition heals, the nodes come to consensus on the main
branch and discard the forked blocks. As a consequence, ∆
stops increasing shortly after 250th second. Hyperledger, in
stark contrast, has no fork which is as expected because its
consensus protocol is proven to guaranteed safety. We note,
however, that Hyperledger takes longer than the other two
systems to recover from the attacks (about 50 seconds more).
This is because of the synchronization protocol performed
after the partitioned nodes reconnect. In particular, when
the nodes reconnect they enter the view change phase and
exchange checkpointed states with each other in order to
establish a new, stable view.

6.2 Micro benchmarks

This section discusses the performance of the blockchains at
the execution, data model and consensus layer. For the first
two layers, the workloads were run with one client and one
server. For the consensus layer, 8 clients and 8 servers were
used.

4. We note that partitioning a N -node network in half does not mean
there are N/2 Byzantine nodes. In fact, Byzantine tolerance protocols
do not count network adversary as Byzantine failure

1M 10M 100M
input size

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

s
e
c
o
n
d

10.52

79.61

x

3.01

24.04

232.78

0.19
0.33

1.94

Execution time

Ethereum

Parity

Hyperledger

1M 10M 100M
input size

10
5

10
6

10
7

10
8

M
B

4,150

22,819

x

718

2,078

13,090

376
473

1,353

Peak memory usage

Ethereum

Parity

Hyperledger

Fig. 11: CPUHeavy workload, ‘X’ indicates Out-of-Memory
error.

Execution layer

We deployed the CPUHeavy smart contract that is initial-
ized with an integer array of a given size. The array is
initialized in descending order. We invoked the contract to
sort the array using quicksort algorithm, and measured the
execution time and server’s peak memory usage. The results
for varying input sizes are shown in Figure 11. Although
Ethereum and Parity use the same execution engine, i.e.
EVM, Parity’s implementation is more optimized, therefore
it is more computation and memory efficient. An interesting
finding is that Ethereum incurs large memory overhead. In
sorting 10M elements, it uses 22GB of memory, as compared
to 473MB used by Hyperledger. Ethereum runs out of mem-
ory when sorting more than 10M elements. In Hyperledger,
the smart contract is compiled and runs directly on the
native machine within Docker environment, thus it does
not have the overheads associated with executing high-level
EVM byte code. As the result, Hyperledger is much more
efficient in term of speed and memory usage. Finally, we
note that all three systems fail to make use of the multi-core
architecture, i.e. they execute the contracts using only one
core.

Data model - IOHeavy

We deployed the IOHeavy smart contract that performs a
number of read and write operations of key-value tuples.
We used 20-byte keys and 100-byte values. Figure 12 re-
ports the throughput and disk usage for these operations.
Ethereum and Parity use the same data model and internal
index structure, therefore they incur similar space over-
heads. Both use an order of magnitude more storage space
than Hyperledger which employs a simple key-value data
model. Parity holds all the state information in memory, so
it has better I/O performance but fails to handle large data
(capped by over 3M states under our hardware settings).
On the contrary, Ethereum only caches only parts of the
state in memory (using LRU for eviction policy), therefore it
can handle more data than Parity at the cost of throughput.
Hyperledger leverages RocksDB to manage its states, which
makes it more efficient at scale.

Hyperledger v1.0. We used the same IOHeavy smart con-
tract to compare I/O performance of Hyperledger version
v1.0 with the older version v0.6. As Figure 14 illustrates,

16

0.8M 1.6M 3.2M 6.4M 12.8M

tuples

10
2

10
3

10
4

s
e
c
o
n
d

377 359 337

69

1329 1181 1087

x x

5618 5411 5123 4852 4527

Average throughput (write)

Ethereum Parity Hyperledger

(a) Write

0.8M 1.6M 3.2M 6.4M 12.8M

tuples

10
3

10
4

s
e
c
o
n
d

2019
1631

1282

512

9329 9234 8974

x x

8785 8758 8700 8670 8605

Average throughput (read)

Ethereum Parity Hyperledger

(b) Read

0.8M 1.6M 3.2M 6.4M 12.8M

tuples

10
3

10
4

10
5

M
B

2,337

5,459

12,804

30,221

2,086

5,045

12,104

x x

360

675

1,283

2,477

4,865

Disk usage

Ethereum Parity Hyperledger

(c) Disk usage

Fig. 12: IOHeavy workload, ‘X’ indicates Out-of-Memory error.

1 10 100 1,000 10,000

blocks scanned

10
−2

10
−1

10
0

10
1

s
e
c
o
n
d

0.020

0.032

0.168

1.374

13.314

0.020

0.034

0.129

0.915

8.901

0.019

0.038

0.135

0.984

8.465

Latency

Ethreum

Parity

Hyperledger

(a) Analytics workload (Q1)

1 10 100 1,000 10,000

blocks scanned

10
−2

10
−1

10
0

10
1

s
e
c
o
n
d

0.025

0.033

0.107

0.595

4.907

0.024
0.031

0.091

0.427

3.472

0.019 0.020
0.023

0.076

0.533

Latency

Ethereum

Parity

Hyperledger

(b) Analytics workload (Q2)

Ethereum Parity Hyperledger
10

1

10
2

10
3

10
4

#
tx

/s

256

45

1122

284

45

1273

328

46

1285

Transaction througput

SmallBank

YCSB

DoNothing

(c) DoNothing workload

Fig. 13: Analytics and DoNothing workloads.

0.2M 0.4M 0.8M 1.2M
tuples

102

103

104

op
s/

se
c

6122 5815 5618 5411

625 625 623 625

Average throughput (write)
Hyperledger v0.6.0 Hyperledger v1.0.0-rc1

(a) Write

0.2M 0.4M 0.8M 1.2M
tuples

102

103

104

op
s/

se
c

8559 8690 8785 8758

627 628 631 630

Average throughput (read)
Hyperledger v0.6.0 Hyperledger v1.0.0-rc1

(b) Read

0.2M 0.4M 0.8M 1.2M
tuples

101

102

103

104

M
B

107
197

360
675

63

141
280

506

Disk usage
Hyperledger v0.6.0 Hyperledger v1.0.0-rc1

(c) Read

Fig. 14: Hyperledger v0.6.0 vs. v1.0.0 against IOHeavy workload.

throughputs of v1.0 is an order of magnitude worse than
that of v0.6. Furthermore, v1.0 crashes with more than 0.8M
operations, reporting exceptions about message oversizes.
The significant gap can be attributed to the changes in the
system architecture from v0.6 to v1.0. In the former, the
nodes take part in PBFT to confirm a block. In this case,
transactions in the IOHeavy workload incur no consensus
overhead because there is only one node. In the latter, a
new service, the orderer, is introduced into the network to
order transactions and provide the consensus. With this new
service, transactions in the IOHeavy workload now need
to communicate with the orderer for them to be confirmed.
More specifically, the nodes in v1.0 perform three more steps
to finish a transaction compared to v0.6. As communication
overhead increases, the throughputs decrease. This result
suggests that replacing PBFT with a centralized service
not only fails to protect the blockchain against Byzantine

failures, but it may also impair the overall performance.

Data model - Analytics

We implemented the analytics workload by initializing the
three systems with over 120, 000 accounts with a fixed
balance. We then pre-loaded them with 100, 000 blocks, each
contains 3 transactions on average. The transaction trans-
fers a value from one random account to another random
account. Due to Parity’s overheads in signing transactions
when there are many accounts, we considered transactions
using only 1024 accounts. We then executed the two queries
described in Section 5.3 and measured their latencies. Fig-
ure 13 shows that the performance for Q1 is similar, whereas
Q2 sees a significant gap between Hyperledger and the rest.
We note that the main bottleneck for both Q1 and Q2 is the
number of network (RPC) requests sent by the client. For Q1,
the client sends the same number of requests to all systems,
therefore their performance are similar. On the other hand,

17

for Q2 the client sends one RPC per block to Ethereum and
Parity, but only one RPC to Hyperledger because of our
customized smart contract implementation. This saving in
network roundtrip time translates to over 10x improvement
in Q2 latency.

6.2.1 Consensus

We deployed the DoNothing smart contract that accepts
a transaction and returns immediately. We measured the
throughput of this workload and compare against that of
YCSB and Smallbank. The differences compared to other
workloads, shown in Figure 13[c] is indicative of the cost
of consensus protocol versus the rest of the software stack.
In particular, for Ethereum we observe 10% increases in
throughput as compared to YCSB, which means that execu-
tion of the YCSB transaction accounts for the 10% overhead.
We observe no differences among these workloads in Parity,
because the bottleneck in Parity is due to transaction signing
(even empty transactions still need to be signed), not due to
consensus or transaction execution.

7 DISCUSSION

In this section, we first distill the lessons learned during the
comparative studies of Ethereum, Parity and Hyperledger.
We then discuss how design principles from database sys-
tems could help improve blockchain performance.

7.1 Lessons Learned From the Performance Study

Understanding blockchain systems. BLOCKBENCH aims
to facilitate better understanding of the design and per-
formance of different private blockchains. As more and
more blockchain systems are being proposed, each offering
different sets of feature, BLOCKBENCH’s main value is that
it narrows down the design space into four distinct ab-
straction layers. The layers are derived from our taxonomy
presented in Section 4 which sufficiently captures the key
and subtle characteristics of blockchain systems. By bench-
marking these layers, one can gain insights into the design
trade-offs and performance bottlenecks. For example, us-
ing the IOHeavy workload we identify that Parity trades
performance for scalability by keeping states in memory.
In addition, the workload reveals potential performance
issues with the latest version of Hyperledger. Another ex-
ample is the Analytics workload that demonstrates trade-
offs in the data models. In particular, Hyperledger’s simple
key-value model means some analytical queries cannot be
directly supported. However, it enables optimization that
helps answering analytical queries more efficiently. Finally,
we identify that the bottleneck in Parity is not due to
the consensus protocol, but due to the server’s transaction
signing. We argue it is not easy to arrive at such insights
without a systematic analysis framework.
Usability of blockchain. Our experience in working with
the three blockchain systems confirms that in their cur-
rent states, the blockchains are not yet ready for mass
usage. Their designs and codebases are still being refined
constantly, and there are no other established applications
beside crypto-currency. Of the three systems, Ethereum is
more mature both in terms of its codebase, user base and de-
veloper community. Another usability issue we encountered

is in porting smart contracts from one system to another,
due of their different programming models. This is likely
to be exacerbated as more blockchain platforms are being
proposed [6], [26], [40], [91].
Comparison to database systems. The comparison against
H-Store presented in the previous section demonstrates
that blockchains perform poorly at data processing tasks
currently being handled by database systems. Although
databases are designed without security and tolerance to
Byzantine failures, we remark that the gap remains too
big for blockchains to be disruptive to incumbent database
systems. There are much for blockchains to learn from
databases in terms of high-performance data processing,
which we discuss next. Nevertheless, there are useful
lessons that databases can take from the popularity and
success of blockchains. Perhaps the most interesting lesson
is that there is a clear need for Byzantine tolerant data pro-
cessing systems which can accommodate a large number of
users. Distributed databases have diverged from P2P system
designs by assuming non-Byzantine failures [16], but with
the increasing availability of faster and more trustworthy
hardware, this may be the right time for the community
to revise interest in high-performance, decentralized, P2P
database systems.

7.2 Bringing Database Designs into Blockchains

The challenges in scaling blockchain by optimizing the
consensus protocols are being addressed in many recent
works [57], [65]. Nevertheless, we demonstrated in our com-
parative study that there are other performance bottlenecks
beside consensus. Figure 15 illustrates different stages that a
transaction goes through before it is considered committed
to the blockchain. Each stage could be a potential bottleneck
and be subject to future optimizations. First, transactions
are batch into a block. Next, the block becomes input to the
consensus protocol, and if selected by the protocol it is sent
to the execution engine. Finally, the engine executes the en-
tire batch of transaction, creates new states and appends the
block to the chain5. We note the striking resemblance with
the flow of a transaction in a distributed database. In fact,
the only difference being the consensus protocol: databases
use two-phase commit or Paxos, whereas blockchains use
Byzantine tolerant protocols or variants thereof. Given the
similarity, we propose four approaches inspired by design
principles in databases to improve blockchain performance.

Decoupling the layers and optimize them individually.
One possible direction is to decouple storage, execution en-
gine and consensus layer from each other, then optimize and
scale them independently. Tezos and Corda, for examples,
have decoupled the consensus layer by outsourcing it to
separate parties. The data model layer could also be de-
coupled. For instance, current systems employ generic key-
value storage, which may not be best suited to the unique
data structure and operations in blockchain. UStore [92]
demonstrates that a storage designed around the blockchain
data structure is able to achieve better performance than ex-
isting implementations. Most importantly, we observe that

5. Note that the execution phase can be considered the last part
of the consensus phase, because during execution a node may detect
conflicting transactions and abort the current consensus round.

18

... Consensus batch execute commit

Blockchain peer

transactions

Fig. 15: The life of a blockchain transaction.

current data models in Ethereum and Hypereldger are not
ideal for answering analytics queries. In particular, both do
not support fine-grained versioning at the transaction level:
it is not possible to immediately query previous versions of
a state except for querying at block level and processing the
state of each block. Implementing a new data model is less
complex when the storage layer is decoupled from the rest
of the blockchain stack.

Embracing new hardware primitives. Many data process-
ing systems are taking advantage of new hardware to boost
their performance [93], [94], [95]. For blockchain, using
trusted hardware, the underlying Byzantine fault tolerance
protocols can be modified to incur fewer network mes-
sages [82]. With trusted hardware, the blockchain can tol-
erate more failures, and because of fewer network messages
it can scale better. Systems like Parity and Ethereum can
take advantage of multi-core CPUs and large memory to
improve contract execution and I/O performance.

Sharding. Blockchain is essentially a replicated state ma-
chine system, in which each node maintains the same
data. As such, blockchains are fundamentally different to
database systems such as H-Store in which the data is
partitioned (or sharded) across the nodes. Sharding helps
reduce the computation cost and can make transaction
processing faster. The main challenge with sharding is to
ensure consistency among multiple shards. However, exist-
ing consistency protocols used in database systems do not
work under Byzantine failure. Nevertheless, their designs
can offer insights into realizing a more scalable sharding
protocol for blockchain. Corda partitions the ledger into
sub-ledgers belonging to smaller group, thus avoiding the
need to broadcast transactions to the entire network. How-
ever, it still depends on an external, centralized compo-
nent for consensus between sub-ledgers. Recent work [65]
has demonstrated the feasibility of sharding the consensus
protocol, making important steps towards partitioning the
entire blockchain.

Supporting declarative language. Having a set of high-level
operations that can be composed in a declarative manner
makes it easy to define complex smart contracts. It also
opens up opportunities for low-level optimizations that
speed up contract execution. Hawk [87] is a recent exam-
ple that applies compiler techniques to hide complexity of
implementing privacy preserving smart contracts. However,
it aims to strengthen security of the smart contracts rather
than improve their performance.

8 CONCLUSION

In this paper, we have conducted a comprehensive survey
on blockchain technologies. We laid out four underpinning
concepts behind blockchains and analyzed the state of the
art using these concepts. We presented our benchmarking
framework, BLOCKBENCH which is designed to evaluate
performance of blockchains as data processing platforms.
Finally, we discussed four potential research directions,
inspired by database design principles, for improving block-
hchain performance. We hope that the survey and bench-
marking framework would serve to guide the design and
implementation of future blockchain systems that are not
only secure, but scalable and usable in the real world.

ACKNOWLEDGEMENTS

This work is funded by the National Research Foundation,
Prime Ministers Office, Singapore, under its Competitive
Research Programme (CRP Award No. NRF-CRP8-2011-08).
We would like to thank colleagues who have provided
valuable feedback to help improve the paper.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[2] Q. Lin, P. Chang, G. Chen, B. C. Ooi, K. Tan, and Z. Wang, “To-
wards a non-2pc transaction management in distributed database
systems,” in Proceedings of ACM International Conference on Manage-
ment of Data (SIGMOD), San Francisco, CA, USA, 2016, pp. 1659–
1674.

[3] A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao, and
D. J. Abadi, “Calvin: fast distributed transactions for partitioned
database systems,” in Proceedings of ACM International Conference
on Management of Data (SIGMOD), Scottsdale, AZ, USA, 2012, pp.
1–12.

[4] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and
I. Stoica, “Coordination avoidance in database systems,” PVLDB,
vol. 8, no. 3, pp. 185–196, 2014.

[5] “Ethereum blockchain app platform,” https://www.ethereum.
org/.

[6] Ripple, “Ripple,” https://ripple.com.
[7] Melonport, “Blockchain software for asset management,” http://

melonport.com.
[8] J. Morgan and O. Wyman, “Unlocking economic advantage with

blockchain. a guide for asset managers.” 2016.
[9] G. S. Group, “Blockchain: putting theory into practice,” 2016.
[10] T. T. A. Dinh, J. Wang, G. Chen, L. Rui, K.-L. Tan, and B. C. Ooi,

“Blockbench: a benchmarking framework for analyzing private
blockchains,” in SIGMOD, 2017.

[11] Ethcore, “Parity: next generation ethereum browser,” https://
ethcore.io/parity.html.

[12] Hyperledger, “Blockchain technologies for business,” https://
www.hyperledger.org.

https://www.ethereum.org/
https://www.ethereum.org/
https://ripple.com
http://melonport.com
http://melonport.com
https://ethcore.io/parity.html
https://ethcore.io/parity.html
https://www.hyperledger.org
https://www.hyperledger.org

19

[13] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland, “The end of an architectural era (it’s
time for a complete rewrite),” in Proceedings of the 33rd International
Conference on Very Large Data Bases (VLDB), Vienna, Austria, 2007,
pp. 1150–1160.

[14] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. C. Hsieh,
S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford, “Spanner: Google’s globally-
distributed database,” in Proceedings of 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Hollywood,
CA, USA, 2012, pp. 261–264.

[15] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proceedings of the 3rd USENIX Symposium on Operating Systems
Design and Implementation (OSDI), New Orleans, Louisiana, USA,
1999, pp. 173–186.

[16] Q. H. Vu, M. Lupu, and B. C. Ooi, Peer-to-Peer Computing Principles
and Applications. Springer-Verlag, 2009.

[17] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” in Proceedings of 18th International Conference on Finan-
cial Cryptography and Data Security (FC), Christ Church, Barbados,
2014, pp. 436–454.

[18] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, and E. Gün, “On scaling decentralized
blockchains,” in Proceedings of 3rd Workshop on Bitcoin and Block-
chain Research, 2016.

[19] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-
performance broadcast for primary-backup systems,” in Proceed-
ings of the IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), Hong Kong, China, 2011, pp. 245–256.

[20] D. Ongaro and J. K. Ousterhout, “In search of an understandable
consensus algorithm,” in Proceedings of the USENIX Annual Tech-
nical Conference (USENIX ATC), Philadelphia, PA, USA, 2014, pp.
305–319.

[21] L. Lamport, “Paxos made simple, fast, and byzantine,” in Proced-
ings of the 6th International Conference on Principles of Distributed
Systems (OPODIS). Reims, France, 2002, pp. 7–9.

[22] “Monax: The ecosystem application platform,” https://monax.io.
[23] M. Vukolic, “The quest for scalable blockchain fabric: proof-of-

work vs. bft replication,” in Open Problems in Network Security -
iNetSec, 2015.

[24] “Proof of authority chains,” https://github.com/paritytech/
parity/wiki/Proof-of-Authority-Chains.

[25] “Stellar,” https://www.stellar.org/.
[26] “kadena,” http://kadena.io/.
[27] “Bigchaindb: a scalable blockchain database,” https://github.

com/bigchaindb/bigchaindb.
[28] “Hyperledger fabric v0.6.0,” https://github.com/hyperledger/

fabric/releases/tag/v0.6.0-preview.
[29] “Hyperledger fabric v1.0.0-rc1,” https://github.com/

hyperledger/fabric/releases/tag/v1.0.0-rc1.
[30] “Global decentralized currency,” https://litecoin.org/.
[31] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,

and M. Virza, “Zerocash: decentralized anonymous payments
from bitcoin,” in IEEE Security & Privacy, 2014.

[32] “Multichain:open platform for blockchain applications,” https://
www.multichain.com/.

[33] JPMorgan, “Enterprise-ready distributed ledger and smart con-
tract platforms,” https://github.com/jpmorganchase/quorum.

[34] “Hydrachain: Permissioned distributed ledger based on eth-
ereum,” https://github.com/HydraChain/hydrachain.

[35] “Openchain: Enterprise-ready blockchain,” https://github.com/
openchain.

[36] “Openchain: Next generation blockchain,” https://iota.org/.
[37] “Tendermint: Blockchain app development simplified,” http://

tendermint.com/.
[38] C. Copeland and H. Zhong, “Tangaroa: a byzantine fault tolerant

raft,” https://github.com/chrisnc/tangaroa.
[39] “Dfinity,” https://dfinity.network/.
[40] L. Goodman, “Tezos: A self-amending crypto-ledger position pa-

per,” 2014.
[41] R. Brown, “Introducing r3 cordatm: A distributed ledger designed

for financial services,” R3CEV blog, 2016.
[42] “Sawtooth lake,” https://github.com/hyperledger/

sawtooth-core.

[43] “Decentralized autonomous organization,” https://www.
ethereum.org/dao.

[44] S. Eskandari, D. Barrera, E. Stobert, and J. Clark, “A first look at
the usability of bitcoin key management,” in Workshop on Usable
Security, 2015.

[45] T. T. A. Dinh, P. Saxena, E. chien Chang, B. C. Ooi, and C. Zhang,
“M2r: enabling stronger privacy in mapreduce computation,” in
USENIX Security, 2015.

[46] W. Zheng, A. Dave, J. Beekman, R. A. Popa, J. Gonzalez, and
I. Stoica, “Oqaque: an oblivious and encrypted distributed ana-
lytics platform,” in NSDI, 2017.

[47] F. Zhang, E. Cecchetti, K. Croman, and E. Shi, “Town crier: an
authenticated data feed for smart contracts,” in IEEE Security &
Privacy, 2016.

[48] B. Smyth, M. Ryan, and L. Chen, “Direct anonymous attestation:
ensuring privacy with corrupt administrator,” in European Work-
shop on Security and Privacy in Ad hoc and Sensor networks, 2007.

[49] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy,
G. M. Voelker, and S. Savage, “A fistful of bitcoins: characterizing
payments among men with no names,” in IMC, 2013.

[50] “Chainalysis - blockchain analysis,” https://www.chainalysis.
com.

[51] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoins:
anonymous distributed e-cash from bitcoin,” in IEEE Security &
Privacy, 2013.

[52] SCIPR Lab, “libsnark: a c++ library for zkSNARK proofs,” https:
//github.com/scipr-lab/libsnark.

[53] “Lightning network: scalable, instance bitcoin/blockchain trans-
actions,” https://lightning.network/.

[54] S. Goldfeder, J. Bonneau, E. W. Felten, J. A. Kroll, and
A. Narayanan, “Securing bitcoin wallets via threshold signatures,”
in ACNS, 2016.

[55] V. Shoup, “Practical threshold signatures,” in EUROCRYPT, 2000.
[56] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the

weil pairing,” Journal of cryptology, 2004.
[57] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and

B. Ford, “Enhancing bitcoin security and performance with strong
consistency via collective signing,” in Proceedings of 25th USENIX
Security Symposium (USENIX Security), Austin, TX, USA, 2016, pp.
279–296.

[58] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping authorities honest or
bust with decentralized witess cosigning,” in IEEE Security &
Privacy, 2016.

[59] J. Behl, T. Distler, and R. Kapitza, “Scalable BFT for multi-cores:
Actor-based decomposition and consensus-oriented paralleliza-
tion,” in 10th Workshop on Hot Topics in System Dependability,
HotDep ’14, Broomfield, CO, USA., 2014.

[60] M. Zbierski, “Parallel byzantine fault tolerance,” in Soft Computing
in Computer and Information Science. Springer, 2015, pp. 321–333.

[61] W. Zhao, “Optimistic byzantine fault tolerance,” International Jour-
nal of Parallel, Emergent and Distributed Systems, vol. 31, no. 3, pp.
254–267, May 2016.

[62] D. Mazieres, “The stellar consensus protocol: A federated model
for internet-level consensus,” Stellar Development Foundation, 2015.

[63] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse, “Bitcoin-ng:
A scalable blockchain protocol,” in NSDI, 2016.

[64] “Proof of stake,” https://github.com/ethereum/wiki/wiki/
Proof-of-Stake-FAQ.

[65] L. Luu, V. Narayanan, C. Zhang, K. Baweija, S. Gilbert, and
P. Saxena, “A secure sharding protocol for open blockchains,” in
CCS, 2016.

[66] “Slimcoin a peer-to-peer crypto-currency with proof-of-burn,”
www.slimcoin.club/whitepaper.pdf.

[67] “Peercoin - secure & sustainable cryptocoin,” https://peercoin.
net.

[68] “Proof of elapsed time (poet),” https://intelledger.github.io/
introduction.html#proof-of-elapsed-time-poet.

[69] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “Proof of activity:
Extending bitcoin’s proof of work via proof of stake,” IACR
Cryptology ePrint Archive, vol. 2014, p. 452, 2014.

[70] S. Park, K. Pietrzak, A. Kwon, J. Alwen, G. Fuchsbauer, and
P. Gazi, “Spacemint: A cryptocurrency based on proofs of space,”
IACR Cryptology ePrint Archive, vol. 2015, p. 528, 2015.

[71] M. Milutinovic, W. He, H. Wu, and M. Kanwal, “Proof of luck: an
efficient blockchain consensus protocol,” IACR Cryptology ePrint
Archive, vol. 2017, p. 249, 2017.

https://monax.io
https://github.com/paritytech/parity/wiki/Proof-of-Authority-Chains
https://github.com/paritytech/parity/wiki/Proof-of-Authority-Chains
https://www.stellar.org/
http://kadena.io/
https://github.com/bigchaindb/bigchaindb
https://github.com/bigchaindb/bigchaindb
https://github.com/hyperledger/fabric/releases/tag/v0.6.0-preview
https://github.com/hyperledger/fabric/releases/tag/v0.6.0-preview
https://github.com/hyperledger/fabric/releases/tag/v1.0.0-rc1
https://github.com/hyperledger/fabric/releases/tag/v1.0.0-rc1
https://litecoin.org/
https://www.multichain.com/
https://www.multichain.com/
https://github.com/jpmorganchase/quorum
https://github.com/HydraChain/hydrachain
https://github.com/openchain
https://github.com/openchain
https://iota.org/
http://tendermint.com/
http://tendermint.com/
https://github.com/chrisnc/tangaroa
https://dfinity.network/
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://www.ethereum.org/dao
https://www.ethereum.org/dao
https://www.chainalysis.com
https://www.chainalysis.com
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://lightning.network/
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
www.slimcoin.club/whitepaper.pdf
https://peercoin.net
https://peercoin.net
https://intelledger.github.io/introduction.html#proof-of-elapsed-time-poet
https://intelledger.github.io/introduction.html#proof-of-elapsed-time-poet

20

[72] Y. Sompolinsky and A. Zohar, “Accelerating bitcoin’s transaction
processing: fast money grows on trees, not chains,” Cryptology
ePrint Archive, Report 2013/881, 2013, https://eprint.iacr.org/
2013/881.pdf.

[73] S. Deetman, “Bitcoin could consume as much electricity as den-
mark by 2020,” https://tinyurl.com/yd8hq6n2, 2016.

[74] “Nxt: own your data, control your vote,” https://nxt.org/.
[75] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse

attacks on bitcoin’s peer-to-peer network,” in Proceedings of 24th
USENIX Security Symposium (USENIX Security), Washington, D.C.,
USA, 2015, pp. 129–144.

[76] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti,
“Making byzantine fault tolerant systems tolerate byzantine fail-
ure,” in NSDI, 2009.

[77] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
speculative byzantine fault tolerance,” in SOSP, 2007.

[78] S. Liu, P. Viotti, C. Cachin, V. Quema, and M. Vukolic, “Xft:
Practical fault tolerance beyond crashes,” in OSDI, 2016.

[79] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honeybad-
ger of bft protocols,” in CCS, 2016.

[80] Intel, “Intel software guard extensions,” https://software.intel.
com/en-us/sgx.

[81] T. Alves and D. Felton, “Trustzone: Integrated hardware and soft-
ware security, enabling trusted computing in embedded systems,”
White paper.

[82] B. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
append-only memory: making adversaries stick to their word,”
in Proceedings of the 21st ACM Symposium on Operating Systems
Principles (SOSP), Stevenson, Washington, USA, 2007, pp. 189–204.

[83] J. Behl, T. Distler, and R. Kapitza, “Hybrids on steroids: Sgx-based
high performance bft,” in Eurosys, 2017.

[84] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies,”
in SOSP, 2017.

[85] “Interledger: the protocol for connecting blockchains.” https://
interledger.org/.

[86] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in CCS, 2016.

[87] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
the blockchain model of cryptography and privacy preserving
smart contracts,” in CCS, 2016.

[88] “BlockBench: private blockchains benchmarking,” https://github.
com/ooibc88/blockbench.

[89] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings
of the 1st ACM Symposium on Cloud Computing (SoCC), Indianapolis,
Indiana, USA, 2010, pp. 143–154.

[90] M. J. Cahill, U. Röhm, and A. D. Fekete, “Serializable isolation for
snapshot databases,” in Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD), Vancouver, BC,
Canada, 2008, pp. 729–738.

[91] Crypti, “A decentralized application platform,” https://crypti.me.
[92] A. Dinh, J. Wang, S. Wang, W.-N. Chin, Q. Lin, B. C. Ooi, P. Ruan,

K.-L. Tan, Z. Xie, H. Zhang, and M. Zhang, “UStore: a distributed
storage with rich semantics,” https://arxiv.org/pdf/1702.02799.
pdf.

[93] K. Tan, Q. Cai, B. C. Ooi, W. Wong, C. Yao, and H. Zhang, “In-
memory databases: Challenges and opportunities from software
and hardware perspectives,” SIGMOD Record, vol. 44, no. 2, pp.
35–40, 2015.

[94] H. Zhang, G. Chen, B. C. Ooi, K. Tan, and M. Zhang, “In-memory
big data management and processing: A survey,” IEEE Transactions
on Knowledge and Data Engineering, vol. 27, no. 7, pp. 1920–1948,
2015.

[95] A. Dragojevic, D. Narayanan, E. B. Nightingale, M. Renzelmann,
A. Shamis, A. Badam, and M. Castro, “No compromises: dis-
tributed transactions with consistency, availability, and perfor-
mance,” in Proceedings of the 25th Symposium on Operating Systems
Principles SOSP, Monterey, CA, USA, 2015, pp. 54–70.

https://eprint.iacr.org/2013/881.pdf
https://eprint.iacr.org/2013/881.pdf
https://nxt.org/
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://interledger.org/
https://interledger.org/
https://github.com/ooibc88/blockbench
https://github.com/ooibc88/blockbench
https://crypti.me
https://arxiv.org/pdf/1702.02799.pdf
https://arxiv.org/pdf/1702.02799.pdf

	1 Introduction
	2 Blockchains: Private vs. Public
	2.1 Public Blockchain
	2.2 Private Blockchain

	3 Key Concepts
	3.1 Distributed Ledger
	3.2 Consensus
	3.3 Cryptography
	3.4 Smart Contracts

	4 State of the Art
	4.1 Distributed Ledger
	4.2 Cryptography
	4.3 Consensus
	4.4 Smart Contracts

	5 BLOCKBENCH
	5.1 Layers
	5.2 Implementation
	5.3 Workloads

	6 Evaluation
	6.1 Macro benchmarks
	6.1.1 Fault tolerance and security

	6.2 Micro benchmarks
	6.2.1 Consensus

	7 Discussion
	7.1 Lessons Learned From the Performance Study
	7.2 Bringing Database Designs into Blockchains

	8 Conclusion
	References

