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Abstract

Tokenization is a crucial step that bridges

human-readable text with model-readable dis-

crete tokens. However, recent studies have re-

vealed that tokenizers can be exploited to elicit

unwanted model behaviors. In this work, we

investigate incomplete tokens, i.e., undecodable

tokens with stray bytes resulting from byte-

level byte-pair encoding (BPE) tokenization.

We hypothesize that such tokens are heavily

reliant on their adjacent tokens and are frag-

ile when paired with unfamiliar tokens. To

demonstrate this vulnerability, we introduce im-

probable bigrams: out-of-distribution combina-

tions of incomplete tokens designed to exploit

their dependency. Our experiments show that

improbable bigrams are significantly prone to

hallucinatory behaviors. Surprisingly, the same

phrases have drastically lower rates of halluci-

nation (90% reduction in Llama3.1) when an

alternative tokenization is used. We caution

against the potential vulnerabilities introduced

by byte-level BPE tokenizers, which may intro-

duce blind spots to language models.

1 Introduction

Tokenization is an important step in the large lan-

guage model (LLM) pipeline, serving as the bridge

between text inputs and the discrete tokens pro-

cessed by the model. Improper tokenization can

lead to undesirable behaviors, such as glitch to-

ken hallucinations (Rumbelow and Watkins, 2023;

Land and Bartolo, 2024) and errors in numerical

reasoning (Singh and Strouse, 2024). Furthermore,

it has been observed that tokenizers can introduce

elements of unfairness (Petrov et al., 2023) and

bias (Ovalle et al., 2024) into models. Given the

increasing duration and cost of model training, in-

vestigating and understanding the impact of the

tokenizer is becoming increasingly important.

Recent works specifically analyze the tokeniza-

tion step to identify inputs that provoke unwanted
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What does "ट能" mean?

The symbol "�능" does not 

have a standard meaning …

"ट能" is a combination of 

characters from different 

writing systems and does not 

have a standard meaning. "ट" 
is a consonant in Devanagari …

What _does _" <0xE0><0xA4> <0x9F> " _mean ?能

What _does _" <0xE0><0xA4> <0x9F>能 " _mean ?

Regular Tokenization (i.e., BPE Tokenization)

Alternative Tokenization

Figure 1: An improbable bigram phrase that combines

two incomplete tokens to cause hallucinatory behaviors

in the Qwen2.5 model. This behavior persists across

multiple models and with well-trained tokens. An alter-

native tokenization of the same phrase does not cause

hallucinations.

model behaviors. Land and Bartolo (2024) propose

embedding layer heuristics to identify glitch tokens

Ð undertrained tokens that cause hallucinations and

also enable jailbreaks (Geiping et al., 2024). Wang

et al. (2024) create adversarial questions designed

to induce incorrect segmentation by the tokenizer,

which degrades model performance.

In this work, we investigate a specific vulnerabil-

ity associated with incomplete tokens in byte-level

byte pair encoding (BPE) tokenizers. These tokens,

also known as undecodable tokens, are byte-level

tokens that cannot be decoded independently and

must appear in conjunction with certain other to-

kens to form legal Unicode characters. We explore

the fragility of these tokens by constructing improb-

able bigrams, which are unlikely yet permissible

combinations of two incomplete tokens. Similar to

glitch tokens, improbable bigrams cause hallucina-

tions to benign user requests, as seen in Figure 1.
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Tokenizer
Vocab
Size

Incomplete
Tokens

Incomplete
Bigrams

Meta-Llama-3.1 128k 1224 71k

Exaone-3.0 102k 1222 36k

Qwen2.5 151k 1320 39k

Mistral-Nemo 131k 1307 135k

Command-R-v01 255k 2956 1479k

Table 1: Vocabulary sizes and number of incomplete

tokens in different tokenizers. Incomplete bigrams refer

to the total number of legal bigrams that can be created

by combining two incomplete tokens.

However, unlike glitch tokens, improbable bigrams

can cause hallucinatory behavior even when their

constituent tokens are well-trained.

Our experiments across multiple LLM families

(such as Llama-3.1, Qwen2.5, and Mistral-Nemo)

demonstrate that these bigrams are significantly

more prone to producing hallucinations compared

to bigrams formed from complete tokens. Intrigu-

ingly, alternative tokenizations of the same phrases

rarely exhibit hallucinations. We believe that our

findings contribute to the growing body of research

on understanding the potential weaknesses of BPE

tokenization, with implications for the development

of more robust language models.

2 BPE Tokenization

Byte pair encoding (BPE), originally developed as

a data compression algorithm (Gage, 1994), has

evolved into a popular tokenization scheme used

by many modern language models (Sennrich et al.,

2016). BPE tokenization iteratively expands the

vocabulary by selecting frequent pairs of exist-

ing tokens as new vocabulary items. In particu-

lar, byte-level BPE, which applies the BPE algo-

rithm at the byte-level rather than the character

level (Wang et al., 2019), offers distinct advantages.

Firstly, byte-level tokenization eliminates out-of-

vocabulary issues by representing all Unicode char-

acters (154,998 in Unicode v16.0) as combinations

of 256 base bytes, ensuring comprehensive cov-

erage. Secondly, it allows for more efficient data

compression. The widespread adoption of byte-

level tokenization in cutting-edge models such as

GPT-4 and Llama 3.1 underscores its effectiveness.

While some have attributed BPE’s effectiveness

to its compression (Gallé, 2019; Goldman et al.,

2024), recent work has challenged this assump-

tion (Schmidt et al., 2024). Bostrom and Dur-

rett (2020) point out that greedy compression pri-

Step 1. Structure Analysis

<0xE0><0xA4>

[Token 5502]

<0x9F><0xE8><0x83><0xBD>

[Token 96808]

<0xE0> needs 2 c-bytes, but has only 1 (<0xA4>)

<0x9F> is a spare 

c-byte

<0xE8><0x83><0xBD> forms 

complete character (能)

Suffix token that has 1 spare c-byte

Prefix token that needs 1 extra c-byte

Step 2. Viability Check

>>> tokenizer.decode([5502, 96808])

ट能
>>> tokenizer.encode("ट能")

[5502, 96808]

Figure 2: Incomplete tokens are analyzed for their struc-

ture to find potential bigram candidates. C-bytes (con-

tinuation bytes) are colored in blue. Tokens with com-

patible structures are tested for viability and reachability

through an decode-encode check.

oritizes frequency over linguistically meaningful

boundaries. This observation is supported by other

works that report model improvements from mor-

phologically motivated modifications to BPE to-

kenizers (Limisiewicz et al., 2024; Bauwens and

Delobelle, 2024). These works demonstrate that

incorrect segmentation by BPE tokenization cause

suboptimal model performance.

3 Incomplete Tokens and Improbable

Bigrams

Byte-level BPE tokenizers are agnostic not only to

morphemes but also to character boundaries. Train-

ing with the BPE algorithm on texts where charac-

ters are encoded with multiple bytes (e.g., Cyrillic

(2 bytes), CJK Unified Ideographs (3 bytes)) often

results in the formation of incomplete tokens. In-

complete tokens contain stray bytes (like <0x9F>

in the token ‘<0x9F>能’) that do not correspond to

recognizable characters. These incomplete tokens

constitute a small but significant portion of the vo-

cabulary in byte-level models. Table 1 presents the

number of discovered incomplete tokens in the vo-

cabularies of various models employing byte-level

tokenizers (see Appendix A for details).

While incomplete tokens are indistinguishable

from complete tokens from the model’s perspective

2



Task User prompt

Repeat Repeat this phrase exactly: “{Phrase}”

Definition What does “{Phrase}” mean?

Do You Know? Today I heard about “{Phrase}”. Do you know what this means?

Usernames

I am trying to learn python. What is the output of this? Print the output only with no

further explanation.

Usernames = ['LiquidBoxi胖胖', '{Phrase}', 'ɹǝʞɹɐd', 'Jhocam(҂ `з´ )', 'AR皮球']

print(Usernames[0:2])

Table 2: Prompt templates used to test phrase-level hallucinations of target phrases. At test time, {Phrase} is

replaced with the tested phrase. If the model fails to repeat the phrase in all four prompts, we consider the phrase to

be hallucinatory.

during training, their structure can influence how

they are trained in subtle ways. First, incomplete

tokens can only occur alongside other incomplete

or single-byte tokens, as the ªstray bytesº of in-

complete tokens require additional bytes to form a

viable character. This restriction limits the range

of tokens they can be associated with. Second,

the potential characters that stray bytes can form

into may have little to no semantic overlap, leading

to a representation that is inherently ambiguous

and heavily reliant on neighboring tokens for dis-

ambiguation. We hypothesize that these factors

exacerbate one another, causing incomplete tokens

to become overly dependent on their context and

brittle in response to unfamiliar adjacent tokens.

To demonstrate this vulnerability, we create

phrases that exploit incomplete tokens to cause

hallucinations. First, we analyze the structure of

incomplete tokens, categorizing those that end with

stray bytes as prefixes and those that begin with

stray bytes as suffixes. We further label prefixes

and suffixes by the number of stray bytes they re-

quire to form a complete character, to find poten-

tial bigram combinations. We create adversarial

combinations of these tokens, termed improbable

bigrams, as illustrated in Figure 2. These bigrams

exploit the dependency of two incomplete tokens

to complete each other. We note that not all com-

binations are viable due to tokenization rules and

merge priorities. Table 1 lists the number of all pos-

sible legal bigrams created from incomplete tokens

across different tokenizers. To identify bigrams

that are particularly out-of-distribution, we use the

heuristic of multilinguality. When a bigram forms

a string, we check the Unicode script type of each

character. If the string contains characters from

different Unicode scripts, we assume it is highly

unlikely to have been encountered during training.

In our experiments, we demonstrate that improba-

Models
Improbable

Bigrams
Baseline
Bigrams

Llama 3.1 48/100 (48%) 0/100 (0%)
Exaone 77/100 (77%) 20/100 (20%)
Qwen2.5 33/100 (33%) 0/100 (0%)
Mistral-Nemo 52/71 (73%) 1/71 (1%)
Command-R 49/100 (49%) 8/100 (8%)

Table 3: Number of hallucinations by improbable bi-

gram phrases (with incomplete tokens) and by baseline

bigram phrases (with complete tokens).

ble bigrams are prone to hallucinations.

4 Hallucination Experiments

Models We experiment using five recently re-

leased instruction-trained models that use byte-

level BPE tokenization: Meta-Llama-3.1-8B-

Instruct1, EXAONE-3.0.-7.8B-Instruct2, Qwen2.5-

32B-Instruct3, Mistral-Nemo-Instruct-24074, and

C4AI-Command-R-v015. We use greedy decoding

for all experiments.

Evaluation Prompts We assess each model’s abil-

ity to accurately process prompts containing im-

probable bigram phrases. We use four prompt

templates designed to induce the model to repeat

a target phrase from the input, regardless of the

phrase’s nonsensical or unusual nature, as detailed

in Table 2. Our goal is to find phrases that mod-

els cannot process for any prompt. Therefore, we

1https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-
Instruct

2https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-
7.8B-Instruct

3https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
4https://huggingface.co/mistralai/Mistral-Nemo-Instruct-

2407
5https://huggingface.co/CohereForAI/c4ai-command-r-

v01
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consider a phrase to have induced hallucinations

only if the model fails to correctly repeat it across

all four prompt templates.

Incomplete Token Selection For each model, we

construct improbable bigrams using the procedure

outlined in Section 3. Noting that undertrained

tokens often lead to hallucinations, we focus our

experiments on well-trained tokens to isolate con-

founding factors. To do this, we employ the em-

bedding heuristics in (Land and Bartolo, 2024) to

detect whether a token in the vocabulary is under-

trained. Specifically, the heuristics estimate the de-

gree of training for each token by taking L2 norms

and cosine distances in the embedding matrix. We

use these metrics to order the entire vocabulary,

and discard the lower (undertrained) half from our

experiments. From the upper half (well-trained

half) of the vocabulary, we identify the incomplete

tokens and create up to 100 improbable bigrams for

each model. Analysis of the languages used in the

improbable bigrams (Appendix B) show language-

pair distributions differ widely between models.

Baselines To better demonstrate the fragility of

improbable bigrams, we create a baseline of bi-

grams constructed with complete tokens. For each

improbable bigram, we create a complete token

counterpart by replacing the prefix and suffix with

similarly-trained tokens. That is, if the initial in-

complete token is the i-th token in the ranked vo-

cabulary, we find a complete token that is slightly

less trained (e.g. the (i-1)-th token). This method

ensures that each improbable bigram is compared

to a baseline of complete bigrams with a similar

level of undertraining.

Results As shown in Table 3, improbable bigrams

suffer from significantly higher rates of hallucina-

tion than their complete token counterparts across

all tested models. This is distinct from hallucina-

tions involving glitch tokens, as previously inves-

tigated by Land and Bartolo (2024), which was

attributed to undertrained tokens. These results

suggest that even well-trained incomplete tokens

can struggle to faithfully represent textual inputs.

5 Alternative Tokenization

Our previous experiments demonstrate that improb-

able bigram phrases are difficult for models to pro-

cess. We conduct further experiments to attribute

this difficulty to the incomplete tokens. We repeat

the experiments, but pre-segment the target phrase

to avoid character boundary-crossing tokenization.

Models

Incomplete
Token

Hallucinations

Alternative
Tokenization

Hallucinations

Llama 3.1 0.48 0.05 (↓90%)
Exaone 0.77 0.50 (↓35%)
Qwen2.5 0.33 0.12 (↓64%)
Mistral-Nemo 0.73 0.01 (↓98%)
Command-R 0.49 0.55

Table 4: Frequency of hallucinations from improbable

bigram phrases with original tokenization (Incomplete

Tokens) and presegmented tokenization (Alternative

Tokenization). Reduction of hallucinations by alterna-

tive tokenization is denoted by ↓ when applicable.

For instance, the improbable bigram phrase ªサー

ミ能º is normally tokenized into incomplete tokens

ªサー<0xE3><0x83>º and ª<0x9F>能º. However,

it can be presegmented to isolate the character

formed from stray bytes (ªミº). We split the string

into three parts (ªサーº, ªミº, and ª能º) and tok-

enize each separately. Afterwards, the tokens can

be appended together to create an alternative token

representation of the same phrase.

Compared to improbable bigrams, the alterna-

tive tokenization sequences can be suboptimal in

two important ways. First, these sequences cannot

be generated by the tokenizer, ensuring that they

are out-of-distribution for the model. Second, the

sequences consist of more than two tokens, requir-

ing the model to recall more tokens correctly to

repeat the phrase accurately.

Table 4 shows results of the experiment repeated

using the alternative tokenization scheme. De-

spite the suboptimalities of alternative tokenization,

most models, with the exception of Command-

R (discussed in Appendix B) show significantly

higher performance when alternative tokenization

is used. The same phrases tend to hallucinate sig-

nificantly less when alternative tokenization is used,

suggesting that the hallucinatory behaviors are be-

ing caused by the incomplete tokens.

6 Discussion

Risks of Unrepeatability We have used a set of

repetition-inducing prompts as a simple task that

identifies phrases that cause model failures. The

repetition failures, stemming from incomplete to-

kens, are possibly indicative of other robustness

failures linked to incomplete tokens. However, in

certain scenarios, non-repeatability itself can cause

real world harms. We highlight few such scenarios.
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• Reliable Code and Data Handling: When mod-

els interact with code or databases, they must

correctly preserve variable names or fixed val-

ues. If models are unable to preserve certain

phrases, they can compromise the integrity of

data.

• Adversarial unrepeatability: Adversaries may

exploit unrepeatable phrases to avoid inter-

vention from LLM agents. For instance, an

attacker can set their username to an unrepeat-

able phrases to evade a moderator agent.

• Model Fingerprinting: Since improbable bi-

grams are model-specific due to vocabulary

design, they could be used to fingerprint the

architecture behind a closed or anonymized

LLM service. This can facilitate sophisti-

cated targeted attacks on private LLMs (e.g.

adversarial triggers optimized for the target

architecture). This can also create implica-

tions for model evaluations that rely on model

anonymity (e.g. Chatbot Arena).

Circumvention Strategies Our findings suggest

that model developers should consider the conse-

quences of vulnerable tokenizer design. The vulner-

ability of incomplete tokens can be circumvented

by preventing incomplete tokens from entering the

final tokenizer vocabulary (before model training

begins). One method could involve vocabulary

pruning (Bauwens and Delobelle, 2024) after tok-

enizer training to remove incomplete tokens. An-

other method would be to constrain BPE merges to

respect character boundaries during tokenizer train-

ing (Land and Arnett, 2025). If full Unicode cov-

erage is not deemed necessary for a certain model,

developers may opt to choose tokenization at the

character-level before tokenizer-training. We hope

that demonstrating potential vulnerabilities of the

default byte-level BPE can motivate more careful

design of tokenizers.

7 Conclusion

Through improbable bigrams, we demonstrate vul-

nerabilities of incomplete tokens present in byte-

level BPE tokenizers. We conclude that incomplete

tokens are significantly more prone to hallucina-

tory behaviors compared to complete tokens. Our

findings suggest that model developers must be

mindful of potential unwanted behaviors caused by

incomplete tokens.

Limitations

This work provides evidence to suggest the fragility

of incomplete tokens. We assess phrase-level hal-

lucinations as a proxy for larger potential harms

of model misbehavior. We limit our investigations

to phrase-level hallucinations, rather than factual

hallucinations. While we occasionally observe that

the models confidently assert incorrect explana-

tions about what is likely non-existent terminology,

this was not possible to evaluate systematically.

One reason is that the tested phrases contain scripts

spanning many languages beyond the expertise of

the authors. Another is that the baseline levels of

factual hallucination when asked about ordinary

terms in low-resource languages are already very

high. In pilot experiments, we found that even mod-

els with high conversational fluency often make

mistakes in explaining non-existent terms.

Our findings on improbable bigrams causing hal-

lucinations were consistent in all 5 models. How-

ever, our secondary experiment on alternate tok-

enization did not cause improvements for the Co-

here Command-R model. It is difficult to isolate

which design choices of the model contributes to

this effect. One hypothesis is that the model’s sig-

nificantly larger vocabulary size, which is approxi-

mately double the other studied models, may have

impacted token training. We have also conducted

an analysis on the languages of the incomplete

bigrams as a possible explanation, but found it in-

conclusive. A more detailed investigation is left

to future work. There is a possibility that these

findings may be influenced by other unknown and

undocumented dependencies relating to tokenizer

parameters, training parameters, and training data.
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A Incomplete Bigram Construction

UTF-8 characters have a flexible number of bytes.

Each multi-byte character comprises of a starting

byte and continuation bytes. Starting bytes indi-

cate how many bytes the character is composed of.

For example, the starting byte of a 3-byte character

implies the following two characters will be con-

tinuation bytes. A more detailed explanation of the

UTF-8 protocol and byte structures can be found

in (Limisiewicz et al., 2024).

Using starting bytes and continuation bytes, we

can identify whether a byte sequence requires more

continuation bytes to be fulfilled or has excess con-

tinuation bytes. As illustrated in Figure 2, each in-

complete token can be analyzed for their structure.

We test all possible combinations of incomplete bi-

grams by pairing bigrams of complementary struc-

tures. We focus only on bigrams that users could

use to induce the intended incomplete bigram struc-

ture. Note that the resulting character of conjoined

bytes may not always correspond to a usable Uni-

code character. There is also a possibility that the

resulting phrase is tokenized into a different se-

quence of tokens. We test this by performing a

decode-encode test to ensure the resulting string is

valid and indeed tokenizes to the intended prefix

and suffix.

B Role of Languages in Improbable

Bigrams

We analyze the scripts of the improbable bigrams

used in the experiments. Note that the language

distributions of the tested improbable bigrams are

not indicative of all possible improbable bigrams
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in each model’s vocabulary, since the bigrams from

the experiments were selected from the top half

of the vocabulary when ordering by token trained-

ness (Section 4). Figure 3 shows the distribution

of languages of the improbable bigrams for each

model. We observe that improbable bigrams can

occur in a wide variety of languages, with higher re-

source multi-byte scripts such as Chinese, Korean,

and Russian being the most frequent. The diversity

of languages of hallucinations suggest there is no

significant influence caused by languages.

Models had different distributions of language-

pairs, which is influenced by both tokenizer train-

ing and model training. For instance, Exaone

had 17 unique language-pairs while Command-

R had only 3 unique language-pairs. Command-

R’s much larger tokenizer vocabulary may have

impacted the incomplete token selection. All of

the 100 bigrams for Command-R contained He-

brew characters. For comparison, there are no

tokens in the top-half of Llama3.1’s vocabulary

that resolve to Hebrew characters. Command-R

is also the only model analyzed with bigrams of

the Hebrew/Korean language-pair. Bigrams of this

language-pair constitute a majority of the tested im-

probable bigrams for Command-R, and performed

worse when using alternative tokenization.

Alternative Tokenization with Hebrew/Korean

The Command-R model’s improbable bigrams did

not show improvements when using alternative

tokenization. Figure 3 shows that alternative to-

kenization harmed performance for the 81 He-

brew/Korean bigrams. We investigate if the He-

brew/Korean language-pair is particularly prone to

hallucinations when using alternative tokenization.

We collect a total of 38 possible bigrams of this

language combination from the Llama3.1 vocabu-

lary. Repeating the experiments with Llama3.1’s 38

Hebrew/Korean bigram pairs, using alternative tok-

enization reduced hallucinations (20/38) compared

to regular tokenization (32/38). These results sug-

gest that Command-R’s unusual result with alterna-

tive tokenization was not caused by the language-

pairing of its improbable bigrams.
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(a) Improbable Bigrams

(b) Improbable Bigrams (alternative tokenization)

Figure 3: Language-pair distributions of the improbable bigrams used in experiments. Darkened colors indicate

improbable bigrams that cause hallucinations.
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