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Abstract

Vision transformers have achieved significant improve-

ments on various vision tasks but their quadratic interac-

tions between tokens significantly reduce computational ef-

ficiency. Many pruning methods have been proposed to re-

move redundant tokens for efficient vision transformers re-

cently. However, existing studies mainly focus on the token

importance to preserve local attentive tokens but completely

ignore the global token diversity. In this paper, we empha-

size the cruciality of diverse global semantics and propose

an efficient token decoupling and merging method that can

jointly consider the token importance and diversity for to-

ken pruning. According to the class token attention, we

decouple the attentive and inattentive tokens. In addition

to preserve the most discriminative local tokens, we merge

similar inattentive tokens and match homogeneous atten-

tive tokens to maximize the token diversity. Despite its sim-

plicity, our method obtains a promising trade-off between

model complexity and classification accuracy. On DeiT-S,

our method reduces the FLOPs by 35% with only a 0.2%

accuracy drop. Notably, benefiting from maintaining the to-

ken diversity, our method can even improve the accuracy of

DeiT-T by 0.1% after reducing its FLOPs by 40%.

1. Introduction

Transformer [29] has become the most popular archi-

tecture in both natural language processing and computer

vision communities. Vision transformers (ViTs) [8] have

achieved superior performance and outperformed standard

CNNs in different vision tasks such as image classifica-

tion [10, 28, 31, 38], semantic segmentation [17, 19, 30, 33],

and object detection [1, 5]. The most remarkable advantage

of transformer is its ability to effectively capture long-range

dependencies between patches in the input image through

*Equal contribution.
†Corresponding authors.
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Figure 1. The ImageNet accuracy and keep rate of the pruned

DeiT-S. (a) Importance-based method preserves attentive tokens

based on the class token attention and masks all inattentive tokens;

(b) Diversity-based method clusters similar tokens into a group

and then combines tokens from the same group into a new token.

(c) Incorporate method decouples and merges tokens to consider

token importance and diversity simultaneously.

the self-attention mechanism [23]. However, quadratic in-

teractions between tokens significantly degrade the compu-

tational efficiency [36], which motivates many researches

on exploring efficient transformers.

As one of the most direct and effective ways to reduce

computational complexity, token pruning has been widely

studied recently. Existing studies mainly focus on designing

different importance-evaluating strategies to retain atten-

tive tokens and prune inattentive tokens [18, 21, 23, 35, 37].

In these importance-based works, DyViT [23] introduces

an extra module to estimate the importance of each token

while EViT [18] reorganizes image tokens based on the

class attention importance score. However, inspired by re-

cent diversity-preserving studies in ViT variants [9, 11–13,

25,27], we argue that promoting token diversity is also cru-
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cial for token pruning. Though inattentive tokens like the

image background and low-level textures are not directly

related to the classification objects, they can increase the

token diversity and improve the expressivity of the model.

As discussed in [32], image backgrounds (e.g., the grass

and leaves in Fig. 2) can improve the classification accuracy

due to their potential relations to foreground objects. To this

end, we first investigate a diversity-based pruning strategy

on DeiT-S [28] with different keep rates. Specifically, in-

stead of highlighting the token importance, it directly clus-

ters and combines similar tokens into a single one, hereby

maximizing the token diversity. Surprisingly, as shown in

Fig. 1, such an intuitive strategy can achieve comparable

and even better performance than SOTA importance-based

pruning methods, especially at the low keep rate.

Despite its promising performance, the diversity-based

strategy cannot retain original attentive tokens and may con-

sequently weaken the discriminative ability of the model.

As shown in Fig. 2 (c), the most representative tokens, e.g.,

eyes and ears of the dog or beaks of two birds, contain crit-

ical semantic information for classification tasks but cannot

be preserved by the diversity-based strategy. To address this

issue, we naturally tend to keep all these dominant tokens

while maintaining the token diversity, as shown in Fig. 2

(d). In short, a satisfied pruning method should jointly take

the token importance and diversity into account, such that

the most important local information and the diverse global

information can be preserved simultaneously.

Motivated by these above observations, in this paper, we

propose a novel pruning method that incorporates the token

importance and diversity through efficient token decoupling

and merging. As shown in Figure 1 (c), we first decouple

the origin token sequence into attentive and inattentive por-

tions based on class token attention. Instead of discarding

inattentive tokens completely, we apply a simplified density

peak clustering algorithm [24] to efficiently cluster similar

inattentive tokens and combine these tokens from the same

group into a new one. In addition, unlike existing methods

that preserve all attentive tokens, we design a straightfor-

ward matching algorithm to fuse homogeneous attentive to-

kens and improve the calculation efficiency further. In this

way, we can effectively prune tokens while maximizing the

preservation of token diversity. We conduct extensive to-

ken pruning experiments to validate the effectiveness of our

method. Despite its simplicity, our method achieves supe-

rior pruning performance on ImageNet [6] for two different

vision transformers, DeiT [28] and LV-ViT [15]. Our main

contributions are summarized as follows:

• To the best of our knowledge, we are the first to em-

phasize the token diversity for pruning ViT. We also

demonstrate its cruciality through numerical and em-

pirical analysis.

(a) (b) (c) (d)

Figure 2. Visualizations of pruning results of different methods on

ImageNet with DeiT-S. (a) Original image. (b) Importance-based

method masks inattentive tokens. (c) Diversity-based method clus-

ters similar tokens and visualizes the same group of tokens as one

colour. (d) Our method preserves the most discriminative tokens,

e.g., the heads of birds and dogs. In addition, we merge similar

inattentive tokens and match homogeneous attentive tokens, e.g.,

the grass and leaves.

• We propose a simple yet effective decoupling and

merging method that can simultaneously preserve the

most attentive local tokens and diverse global seman-

tics without imposing extra parameters.

• Benefiting from incorporating token importance and

diversity, our method achieves new SOTA performance

on the trade-off between accuracy and FLOPs. It

can also be deployed to other token pruning methods,

achieving excellent performance improvement.

2. Related work

Vision Transformers. Different from convolution net-

works, the transformer has a significant ability to model

long-range dependencies and minimal inductive bias [35].

Recent advances suggest that the variants of transformers

could be a competitive alternative to CNNs. Visual trans-

former (ViT) [8] is the first work to apply transformer ar-

chitecture to achieve STOA performance, but it only re-

places the standard convolution in the deep neural network

on large-scale image datasets. To free ViT from dependence

on large datasets, DeiT [28] incorporates an additional to-

ken for knowledge distillation to improve the training effi-

ciency of vision transformers. LV-ViT [15] further improves

the performance by utilizing all the image patch tokens to

calculate the training loss intensively. It is equivalent to

converting the image classification problem into each token

recognition problem. While ViT and its follow-ups achieve

excellent performance, the complexity quadratic with the

number of tokens incurs high computational costs. Token

pruning aims to reduce redundant tokens and improve the

inference efficiency of various ViT backbones.
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Figure 3. Illustration of our approach. (top) Employ our method at the 4th, 7th, and 10th layers of the DeiT-S model. (bottom) Model

structure within a single transformer block. We decouple the attentive and inattentive tokens according to class token attention. Then, we

cluster inattentive tokens and combine the tokens from the same group into a new token. Meanwhile, we match homogeneous attentive

tokens and combine the same pair of tokens.

ViT Token pruning. Though ViT has achieved compet-

itive accuracy in vision tasks [1, 5, 10, 28, 31, 38], it needs

huge memory and computational resources. Therefore, how

to build a more efficient transformer draws researchers’ in-

terest. Compared with CNN, the higher computing cost of

the transformers is mainly due to the quadratic time com-

plexity of multi-head self-attention (MHSA). Accordingly,

some work [18, 21, 23, 35] attempts to prune tokens based

on importance score in transformer. Based on whether ex-

tra parameters need to be introduced to the model, we di-

vide the existing token pruning methods into the following

two groups. One group performs token pruning by inserting

prediction modules. DyViT [23] designs a lightweight pre-

diction module inserted into different layers to estimate the

importance score of each token to prune redundant tokens

given the current features. IA-RED2 [21] introduces inter-

pretable modules to dynamically delete redundant patches

that are not related to the input. AdaViT [20] connects a

lightweight decision network to the backbone to dynam-

ically generate decisions. The other group leverages the

class token attention to keep attentive tokens. EViT [18]

divides image tokens into attentive and inattentive tokens

according to class token attention, retains attentive tokens

and discards inattentive image tokens to reorganize image

tokens. Evo-ViT [35] distinguishes informative and un-

informative tokens through global class attention for slow

and fast updates, respectively. A-ViT [37] designs an adap-

tive token pruning mechanism based on class token atten-

tion, which dynamically adjusts the calculation cost of im-

ages with different complexity. Unlike these token prun-

ing methods, which only focus on the importance of tokens,

our method also considers the diversity of token semantic

information. Therefore our method achieve incredible per-

formance.

3. Preliminaries

In standard vision transformers [8], each input image

I ∈ R
H×W×C is first converted into a single-dimensional

patch sequence X ∈ R
N×P 2

×C . Then all patches are

mapped into D-dimensional token embeddings via a train-

able linear layer. Additionally, a learnable position embed-

ding Epos ∈ R
(N+1)×D is added to token embedding to

retain position information. Formally, the input patch se-

quence can be represented as:

3



X = [xcls; x1; . . . ; xN] + Epos, (1)

where xcls denotes the learnable class token that serves as

the image representation, and xi denotes the token of the i-

th patch with i ≥ 0. Afterwards, such token sequence is fed

into a ViT model with L stacked transformer blocks, each of

which consists of a multi-head self-attention (MHSA) mod-

ule and a feed forward network (FFN).

3.1. MHSA & FFN

In MHSA, the input token sequence is linearly mapped

into three different matrices of query Q, key K, and value

V, respectively. MHSA can be formulated as:

MHSA (Z) = Concat

[

softmax

(

Qh
(

Kh
)⊤

√
d

)

Vh

]H

h=1

,

(2)

where Z is the token sequence of N+ 1 tokens. Concat[·]
outputs the feature concatenation of H heads. Qh, Kh and

Vh are projection matrices of Q, K, and V in the h-th head,

respectively. d is the feature dimension of the single head.

FFN typically consists of two fully-connected layers and

a nonlinear mapping layer, which can expressed as:

FFN (Z) = Sigmoid(Linear(GeLU(Linear(Z)))), (3)

where Linear denotes the fully-connected layers and GeLU
is an non-linear activation function.

3.2. Computation Complexity

The dimension of the input token sequence is N ×D,

where N is the number of tokens and D is the embed-

ding dimension of each token. Thus the calculational costs

of MSHA and FFN modules are O
(

4ND2 + 2N2D
)

and

O
(

8ND2
)

, respectively. Obviously, vision transformers

require very intensive computational costs, with the total

computational complexity of O
(

12ND2 + 2N2D
)

. Since

reducing the channel dimension D only affects the calcu-

lation of current matrix multiplication, most related works

tend to prune tokens, e.g. reducing the number of N , to re-

duce all operations linearly or even quadratically.

4. Methodology

4.1. Overview

Different from existing works only focus on attentive to-

kens, our method incorporating token importance and di-

versity to obtain efficient and accurate vision transformers.

To this end, we propose the token decoupling and merging

method, achieving promising trade-offs between the FLOPs

and accuracy. As shown in Figure 3, we insert our approach

at the 4th, 7th, and 10th layers of the DeiT-S model. The
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Figure 4. Comparing the pruning results of our method and the

EViT method with different keep rates on DEiT-S in terms of the

diversity score and classification accuracy on ImageNet. The di-

versity score is obtained at the final pruning layer.

approach has two main components: the token decoupler

and the token merger. The decoupler divides the origin

token sequence into attentive and inattentive sections based

on class token attention. Then the merger clusters similar

inattentive tokens and matches homogeneous attentive to-

kens. In this section, we first demonstrate how preserving

token diversity benefits token pruning and then present the

two main components in detail.

4.2. Token diversity matters

In the literature, most work only emphasize retaining im-

portant tokens but directly discard all the remaining ones

to achieve satisfactory token keep rates. However, inspired

by the observations in [32], that even the image back-

ground can help improve foreground-instance classification,

we argue that the less important tokens could also contain

useful semantic information and be an effective comple-

mentary to the information diversity. Also, as discussed

in [9, 11–13, 25, 27], the token diversity is very critical to

optimize transformer structures. Therefore, appropriately

preserving these inattentive tokens augments the diversity

of semantic information, which can be beneficial to token

pruning. On the contrary, blindly discarding tokens will

cause irreversible loss of semantic information, especially

at the low keep rates. Referring to [7, 11, 26, 27], we lever-

age the difference between the token and a rank-1 matrix to

measure the diversity of token sequence Z. The diversity

4



scores r (Z) can be calculated as:

r (Z) =
∥

∥Z− 1z⊤
∥

∥ , where z = argmin
z
′

∥

∥Z− 1z′⊤
∥

∥ ,

(4)

where ‖ · ‖ represents l1 norm. Z ∈ R
N×C is the token se-

quence of N tokens and z, z′ ∈ R
C is one of the tokens. z⊤

is the matrix transpose of z and 1 is an all-ones vector. The

rank of matrix 1z⊤ is 1. A larger diversity score indicates a

more diverse token sequence.

We investigate how the diversity scores affect the token

pruning performance. In Figure 4, we examine the classi-

fication accuracy and the diversity score at different keep

rates. Obviously, we can see that the token sequence di-

versity score is positively correlated with classification ac-

curacy. In either the EViT method or our proposed method,

higher diversity score consistently result in higher accuracy.

In addition, it can also be observed that, as for the EViT

method, the diversity score and classification accuracy drop

rapidly as the keep rate decreases. Differently, benefiting

from our diversity-preserving token merging strategy, our

method can maintain relatively higher diversity scores at

different keep-rates and thus consistently outperform the

EViT method, especially at the low keep-rate. Therefore,

maintaining higher token diversity is crucial to improve

classification accuracy.

4.3. Token Decoupler

In order to fully consider token importance while main-

taining diversity, we prioritize the attentive tokens to pre-

serve the most important semantic information. Therefore,

we decouple original token sequence into attentive and inat-

tentive tokens so that we maintain token diversity and im-

portance simultaneously. Same as [29], we split the tokens

into two groups by comparing their similarities with the

class tokens. Mathematically, the similarity scores Attncls
between the class token and other tokens as class token at-

tention can be calculated by

Attncls = Softmax

(

qcls ·K⊤

√
d

)

, (5)

where qcls denotes the class token of query vector. With N

tokens in total and the keep rate of η, we choose the top-K

tokens as attentive tokens according to attention scores. The

remaining N -K tokens are identified as inattentive tokens

that contain less information. Moreover, in the multi-head

self-attention layer, we calculate the average of the attention

scores of all heads.

4.4. Token Merger

We apply different strategies for attentive and inatten-

tive tokens when merging tokens. For inattentive tokens,

we first apply density peak clustering algorithm to clus-

ter inattentive tokens and then combine the tokens from

the same group into new token by weighted sum. In this

way, we can integrate a new inattentive token sequence

T = [t1; . . . ; tn]. For attentive tokens, we adapt a straight-

forward matching algorithm to fuse homogeneous attentive

tokens. The fused token sequence is P = [p1; . . . ; pm].
We concat T and P to obtain the pruned token sequence

Z = [zcls; p1; . . . ; pm; t1; . . . ; tn].

Inattentive Token Clustering. Common K-means clus-

tering algorithm requires multiple iterations to obtain satis-

factory results, reducing throughput in practice and defeat-

ing the intent of speeding up the model. After research, we

found that the density clustering algorithm can quickly find

classes of arbitrary shape by exploiting the density connec-

tivity of classes. Therefore, we simplify an efficient density

peak clustering algorithm (DPC) with neither an iterative

process nor more parameters. We follow the DPC algorithm

proposed in [24]. It assumes that the cluster center is sur-

rounded by low-density neighbours, and that the distance

between the cluster center and any high-density points is

relatively large. We calculate two variables for each token

i: the density ρ and the minimum distance from the higher

density token δ. Given a set of tokens x, we calculate the

density of each token ρ by

ρi = exp





∑

zj∈Z

‖zi − zj‖22



 . (6)

where Z denotes the set of tokens. zi and zj are correspond-

ing token features.

For the token with the highest density, its minimum dis-

tance is set to the maximum distance between it and any

other tokens. We define δi as the minimum distance be-

tween the token i and any other token with higher density.

The minimum distance of each token is:

δi =

{

minj:ρj>ρi
‖zi − zj‖2 , if ∃j s.t. ρj > ρi

maxj ‖zi − zj‖2 , otherwise
. (7)

We denote the clustering center score of the i-th token

as ρi × δi. Higher scores mean higher potential to be clus-

ter centers. We select top-K-scored tokens as cluster cen-

ters. The DPC algorithm assigns each remaining token to

the cluster whose cluster center is closest to the token and

has a higher density.

Attentive Token Matching. See example images in Fig-

ure 5. Homogeneous tokens are also present in foreground

objects (attentive tokens), such as the cheeks of animals.

This redundancy makes it possible to fuse homogeneous at-

tentive tokens to reduce the number of tokens while main-

taining accuracy. We could apply the same token cluster-

ing strategy as did for inattentive tokens. However, since
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Model Method Top-1 Acc. (%) Params (M) FLOPs (G) FLOPs ↓(%) Throughput (img/s)

DeiT-T

DeiT-T [28] 72.2 5.6 1.3 0.0 2536

DyViT [23] 71.2 5.9 0.9 30.8 3542

PS-ViT [26] 72.0 5.6 0.9 30.8 3563

SViTE [3] 70.1 4.2 0.9 30.8 2836

SPViT [16] 72.2 5.6 1.0 23.1 -

Evo-ViT [35] 72.0 5.6 0.8 38.5 3627

Ours-DeiT-T 72.3 5.6 0.8 38.5 3641

DeiT-S

DeiT-S [28] 79.8 22.1 4.6 0.0 943

DyViT [23] 79.3 22.8 2.9 37.0 1420

PS-ViT [26] 79.4 22.1 2.6 43.5 1392

IA-RED2 [21] 79.1 22.1 3.2 30.4 1362

Evo-ViT [35] 79.4 22.1 3.0 34.8 1449

EViT [18] 79.5 22.1 3.0 34.8 1455

A-ViT [37] 78.6 22.1 3.6 21.7 -

Ours-DeiT-S 79.6 22.1 3.0 34.8 1468

EViT+Ours 79.6 22.1 3.0 34.8 1459

DeiT-B

DeiT-B [28] 81.8 86.6 17.6 0.0 302

DyViT [23] 81.3 - 11.6 34.1 454

PS-ViT [26] 81.5 86.6 11.6 34.1 445

IA-RED2 [21] 80.9 86.6 11.6 34.1 453

Evo-ViT [35] 81.3 86.6 11.6 34.1 448

EViT [18] 81.3 86.6 11.6 34.1 450

Ours-DeiT-B 82.0 86.6 11.6 34.1 462

Table 1. Comparisons with existing token pruning methods on DeiT. We report the top-1 classification accuracy, FLOPs, and throughput

on ImageNet. ‘FLOPs ↓’ denotes the reduction ratio of FLOPs.

the attentive tokens contain critical semantic information

for the final classification task, it would be best if we can

preserve the original tokens. To address this problem, we

customize a straightforward matching algorithm that keeps

the most important tokens while fusing homogeneous to-

kens. Specifically, we define the cosine similarity metric to

determine the similarity between different tokens and calcu-

late cosine similarity scores between attentive tokens. Then

we select top-K most similar token pairs as homogeneous

tokens. Finally, we combine each pair of tokens into a new

token and contact the remaining attentive tokens.

Although tokens in the same set have similar seman-

tic information, the semantic importance of each token is

not necessarily the same. Instead of blindly averaging

the tokens in the same set, we combine these tokens by a

weighted sum. By introducing a class token attention to

represent the importance, we combine the same set of to-

kens into a new token by

pi =
∑

j∈Ci

sjzj , (8)

where sj denotes the importance score of token zj , and Ci

denotes the i-th set.

5. Experiments

5.1. Setup

Dataset and evaluation metrics. Our experiments are

conducted on ImageNet-1K [6] with 1.28 million training

images and 50000 validation images. We report the top-

1 classification accuracy and the floating-point operations

(FLOPs) to evaluate model efficiency. In addition, we mea-

sure the throughput of the models on a single NVIDIA

V100 GPU with batch size fixed to 256.

Implementation details. To demonstrate the generaliza-

tion of our method, we conduct token pruning on differ-

ent ViT models including DeiT-T, DeiT-S, DeiT-B [28], and

LV-ViT-S [15]. Following [18], we employ our method at

the 4th, 7th, and 10th layers of the DeiT-T/S/B model and

at the 4th, 8th, and 12th layers for LV-ViT-S [15]. We

utilize the same training settings as the original papers of

DeiT [28] and LV-ViT [15]. Following [38], we incorpo-

rate a cosine scheduler into our learning strategy where the

keep-rate gradually decreases from 1 to the target value for

100 epochs. For fair comparisons, all of our models are

trained from scratch for 300 epochs on 8 NVIDIA V100.

6



Figure 5. Visualization of token merger results on DeiT-S. The masked areas of different colours represent the inattentive tokens are divided

into dissimilar token groups. Our method clusters similar inattentive tokens into a group and matches homogeneous attentive tokens. We

visualize the same groups/pairs of tokens as the same colour.

Method Top-1 Acc FLOPs Params

(%) (G) (M)

ViT-Base/16 [8] 77.9 17.6 86.6

DeiT-S [28] 79.8 4.6 22.1

DeiT-Base/16 [28] 81.8 17.6 86.6

PVT-Small [30] 79.8 3.8 24.5

PVT-Medium [30] 81.2 6.7 44.2

CPVT-Small-GAP [4] 81.5 4.6 23.0

CoaT Mini [34] 80.8 6.8 10.0

CoaT-Lite Small [34] 81.9 4.0 20.0

CrossViT-S [2] 81.0 5.6 26.7

CrossViT-B [2] 82.3 14.1 64.1

Swin-T [19] 81.3 4.5 29.0

Swin-S [19] 83.0 8.7 50.0

Swin-B [19] 83.3 15.4 88.0

T2T-ViT-14 [38] 81.5 5.2 22.0

T2T-ViT-19 [38] 81.9 8.9 39.2

T2T-ViT-24 [4] 82.2 21.2 104.7

RegNetY-8G [22] 81.7 8.0 39.0

RegNetY-16G [22] 82.9 16.0 84.0

LV-ViT-S [14] 83.3 6.6 26.2

DyViT-LV-S 83.0 4.6 26.2

EViT-LV-S 83.0 4.7 26.2

Ours-LV-S 83.1 4.7 26.2

Table 2. Comparisons with state-of-the-art vision transformers on

ImageNet. We prune the LV-ViT-S as the base model.

5.2. Main Results

Comparisons with the-state-of-the-arts. We compare

our method with SOTA token pruning methods, results are

shown in Table 1. We leveraged the η indicates the keep

rate. We report the top-1 accuracy, FLOPs, and throughput

for each model. Compared to previous work, our method

achieves new SOTA performance with similar computation

3.0 2.6 2.3 2.0 1.8 1.6
FLOPs(G)
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Figure 6. Performance comparisons of DyViT, EViT, and our

method with different FLOPs.

costs. Specifically, on the classic model DeiT-S [28], the

top-1 accuracy degradation of our pruned models is con-

trolled within 0.2% when the computation costs decreases

by 35%. In addition, the superiority of our method is more

obvious at lower keep-rates. When the compression ratio

of DeiT-S is increased to 50%, we improve 0.5% compared

to the best counterpart. In particular, the compression ratio

of our method is close to 40% on the DeiT-T [28] model,

and the accuracy is even better than the original model.

Owing to the token diversity and importance are orthog-

onal for token pruning, our method can be plugged into

EViT and achieve a performance improvement of 0.1%. As

shown in Table 2, we further conduct experiments on the

deep-narrow transformer LV-ViT [15]. We observe that our

method achieves better accuracy-complexity trade-offs on

different keep rates compared to the current foremost CNN

and ViT architectures.

Performance of existing methods on each keep rate. As

shown in Figure 6, our method consistently achieves the

best performance while the other two methods obtain close

performance. In addition, with the decrease of keep rate,
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Strategy Acc (%) FLOPs (G)

Deit-S 79.8 4.6

DeiT-S/η=0.7

+ attentive token preservation 79.3 3.0

+ inattentive token pack 79.3 3.0

+ inattentive token clustering 79.5 3.0

+ attentive token matching 79.6 3.0

DeiT-S/η=0.5

+ attentive token preservation 78.2 2.3

+ inattentive token pack 78.4 2.3

+ inattentive token clustering 78.8 2.3

+ attentive token matching 79.0 2.3

Table 3. Ablation study on our method with different keep-rate η.

the classification accuracy of existing token pruning meth-

ods drops sharply. Fortunately, our method alleviates the

phenomenon by preserving the diversity of token seman-

tic information. Especially when the FLOPs of DyViT is

reduced to 1.6G, the classification accuracy drops by more

than 10%. This is because completely discarding inattentive

tokens greatly decreases token diversity, resulting in the re-

duction of the semantic information of the original token

sequence. We apply the token decoupling and merging to

simultaneously consider the token importance and diversity,

achieving incredible accuracy at low keep rates. Intuitively,

when we only keep a few tokens, merging tokens obviously

makes more sense than keeping only top-K attentive tokens.

Visualization of the token merger results. To further

show the interpretability of our method, we visualize the

final token merger results back to its original input patches

in Figure 5. We notice that our method pays attention to

the regions that contribute more to image prediction instead

of uninformative backgrounds. e.g., the animal’s five sense

organs are preserved. It demonstrates that our method effec-

tively decouple the attentive and inattentive tokens. Unlike

other methods that mask all inattentive tokens, our method

combines background patches with similar semantics. e.g.,

the animal’s fur is merged into a single token. It implies that

our method not only focuses on attentive tokens but also

maintains the diversity of token semantics. It is also worth

pointing out that the paired eyes are matched and combined

into a token in the fifth and sixth image. It indicates that our

method effectively fuse homogeneous attentive tokens and

reduces the potential redundancy.

5.3. Ablation Analysis

Effectiveness of each module. As shown in Table 3, we

add the sub-modules one by one to evaluate the effective-

ness of each module. i) Attentive token preservation. Dis-

Method Acc FLOPs Throughput

(%) (G) (img/s)

Pooling strategy

Average pooling 78.1 2.3 1630

Max pooling 78.1 2.3 1623

Spatial pooling 78.2 2.3 1605

Sub-sampling strategy

Convolution 78.2 2.3 1454

MLP 78.3 2.3 1447

Cluster strategy

K-means(1 iter) 78.6 2.3 1386

K-means(3 iter) 78.8 2.3 1231

Ours 79.0 2.3 1670

Table 4. Different token merger strategies on DeiT-S.

card inattentive tokens based on the class token attention in

pruning layers; ii) Inattentive token pack. Pack all inatten-

tive tokens into one token; iii) Inattentive token clustering.

Cluster inattentive tokens and combine the tokens of the

same group into a new token; iv) Attentive token matching.

Match attentive tokens and combine the tokens of the same

pair into a new token; It is evident that since the clustering

module preserves token diversity, the accuracy is improved

by 0.2% and 0.8% at keep rates of 0.7 and 0.5, respectively.

Noteworthy, the lower keep rates, the better our method

works. In addition, the attentive token matching module

further reduces the FLOPs of the model while maintaining

accuracy by fusing homogeneous attentive tokens.

Different Token Merger Strategy. As presented in Ta-

ble 4, we compare several common token merging strate-

gies to assess the effectiveness of our approach. i) Pooling

strategy. Utilize the pooling operation to reduce the num-

ber of tokens. ii) Sub-sampling strategy. Adding a series

of convolution layers between MHSA and FFN to decrease

the token dimension. iii) Cluster strategy. Cluster the to-

kens and combine the tokens of the same group into a new

token. We observe that the clustering strategy generally

improves the accuracy by 0.4% compared to other token

merging strategies. A possible reason is that the cluster-

ing strategy obtains more inductive bias at the same com-

putational cost. However, we find that the throughput of

K-means algorithm is lower, indicating that it does not per-

form well in terms of model acceleration in practice. Fur-

thermore, we discover that the throughput of the K-means

algorithm decreases with the number of iterations. There-

fore we simplify an efficient DPC algorithm with neither an

iterative process nor more parameters, which outperforms

other strategies on both accuracy and efficiency.
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6. Conclusion

In this paper, we propose a token decoupling and merg-

ing method to simultaneously consider the token impor-

tance and diversity. Since token importance and diversity

are orthogonal for token pruning, our method can be em-

ployed into exisiting token pruning methods to further im-

prove the performance. We demonstrate that our method

achieved the SOTA performance trade-off between accu-

racy and FLOPs without imposing extra parameters. We

hope that this paper, which incorporates token importance

and diversity, will provide insights for the future work of

pruning visual transformers.

References

[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In European confer-

ence on computer vision, pages 213–229. Springer, 2020. 1,

3

[2] Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda.

Crossvit: Cross-attention multi-scale vision transformer for

image classification. In Proceedings of the IEEE/CVF in-

ternational conference on computer vision, pages 357–366,

2021. 7

[3] Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang,

and Zhangyang Wang. Chasing sparsity in vision transform-

ers: An end-to-end exploration. Advances in Neural Infor-

mation Processing Systems, 34:19974–19988, 2021. 6

[4] Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, Xi-

aolin Wei, Huaxia Xia, and Chunhua Shen. Conditional po-

sitional encodings for vision transformers. arXiv preprint

arXiv:2102.10882, 2021. 7

[5] Zhigang Dai, Bolun Cai, Yugeng Lin, and Junying Chen.

Up-detr: Unsupervised pre-training for object detection with

transformers. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pages 1601–

1610, 2021. 1, 3

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 2, 6

[7] Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas.

Attention is not all you need: Pure attention loses rank dou-

bly exponentially with depth. In International Conference

on Machine Learning, pages 2793–2803. PMLR, 2021. 4

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint

arXiv:2010.11929, 2020. 1, 2, 3, 7

[9] Chengyue Gong, Dilin Wang, Meng Li, Vikas Chandra, and

Qiang Liu. Vision transformers with patch diversification.

arXiv preprint arXiv:2104.12753, 2021. 1, 4

[10] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron,

Pierre Stock, Armand Joulin, Hervé Jégou, and Matthijs
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