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Abstract

We introduce DafnyBench, the largest benchmark of its kind for training and
evaluating machine learning systems for formal software verification. We test the
ability of LLMs such as GPT-4 and Claude 3 to auto-generate enough hints for the
Dafny formal verification engine to successfully verify over 750 programs with
about 53,000 lines of code. The best model and prompting scheme achieved 68%
success rate, and we quantify how this rate improves when retrying with error
message feedback and how it deteriorates with the amount of required code and
hints. We hope that DafnyBench will enable rapid improvements from this baseline
as LLMs and verification techniques grow in quality.

1 Introduction

Rapidly improving Large Language Models (LLMs) [1±3] are helping accelerate software develop-
ment through co-pilots and other program synthesis tools. But how can we ensure that LLM-generated
code meets our specifications and reliably does precisely what it is supposed to do? Indeed, this
remains a persistent problem even with human-written code: major code-testing efforts failed to
prevent e.g. bugs causing an Ariane-V rocket explosion [4] and embarrassing security vulnerabilities
in ssh [5] and the Bash shell [6]. The latter was built into the Unix operating system for 25 years
before being discovered.

*Equal contribution. Order determined alphabetically.
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Preprint. Under review.

ar
X

iv
:2

40
6.

08
46

7v
1 

 [
cs

.S
E

] 
 1

2 
Ju

n 
20

24



Although formal verification can guarantee perfect reliability, providing rigorous mathematical proof
that software meets specification, it has yet to gain widespread adoption because it is costly. Formally
verifying code can easily take more than ten times as much human work as writing it in the first place.
Moreover, existing formal-verification tools tend to involve a major learning curve above and beyond
just learning to code, greatly reducing the pool of people able to do this work.

The premise of this paper is that AI will soon be able to greatly facilitate formal verification, and
hopefully even fully automate it one day. This would drive its cost to near-zero, dramatically increase
its adoption and dramatically reduce the prevalence of buggy software. It is easy to imagine formal
verification becoming simply a built-in final step of future compilers, which discover code problems
and perhaps even fix them automatically. This optimistic premise is based on the close analogy with
automated theorem proving, where AI produces formal proofs not about code but about mathematical
theorems. Fueled by the advent of benchmarks totaling over 100,000 theorems, AI tools have during
the past few years improved their proof success fraction to over 82% [7, 8].

Unfortunately, formal verification sorely lacks correspondingly large benchmarks: the largest of their
kind are Clover [9] and dafny-synthesis [10], containing 66 and 153 programs, respectively. There
is room for expanding not only their size, but also their level of difficulty: For example, Clover is
limited to single-function programs, and sometimes the formal specification for the program directly
repeats the implementation of the algorithm (see Appendix F). To support automation of formal
verification, the goal of the present paper is to provide such a benchmark expansion. We do so by
assembling a suite of formally verified programs written in Dafny, a formal verification language
that was developed for easy adoption by programmers due to its similarity with popular imperative
programming languages such as Python and C++ [11]. In order for formal verification to succeed,
most of these programs require supplementary text constituting ªhintsº to the automated theorem
prover.

The rest of this paper is organized as follows. We summarize related work in Section 2, describe our
benchmark construction in Section 3, and quantify the ability of current LLMs to solve benchmark
verification tasks in Section 4. We summarize our results and discuss promising opportunities for
further work in Section 5 . We provide further details on the benchmark construction and evaluation
in appendices.

2 Related Work

As summarized in Table 1 below, there is a striking lack of training data for formal verification: while
there are hundreds of thousands of training examples for proving mathematical theorems and over ten
thousand training examples for synthesizing programs, there are only 66 + 153 = 219 for proving
program correctness. This motivates our work in the current paper to expand the benchmarks from
Clover and dafny-synthesis.

The 66 programs in the Clover benchmark are human-written. In contrast, dafny-synthesis translates
153 MBPP problems from Python to Dafny using GPT-4. While this method is more efficient than
manual translation, it could potentially skew the distribution of represented problems away from
real-world Dafny problems that may be too hard for GPT-4 to verify on its own [10]. Our dataset
counterbalances this potentially skewed distribution by introducing problems verified by human
programmers on GitHub.

Clover proposes the most sophisticated benchmark evaluation strategy to date for formally verifiable
software: the authors suggest a six-way consistency check between code, docstrings, and hints. Their
checker achieves an 87% acceptance rate of correct implementations on the Clover benchmark while
rejecting all incorrect implementations [9]. The authors note that equivalence checking with natural
language is currently weak, but can hopefully be improved upon [9]. We do not yet implement the
full Clover evaluation scheme in DafnyBench, and instead deem a benchmark program "solved" if a
model can make it pass the Dafny verifier without modifying the requires and ensures statements
in the program and without using {:verify false} or assume false (see Appendix E for further
details).

2



Table 1: Summary of popular machine-learning benchmark datasets for proving mathematical
theorems, synthesizing programs, and formally verifying programs. Size is measured by the number
of samples in each dataset. In the formal reasoning datasets, each sample is usually a math problem
or a theorem. In the program synthesis and verified software programming benchmarks, each sample
corresponds to a program.

Category Dataset Size

Mathematical theorem proving

CoqGym [12] 71,000 proofs
LeanDojo [13] 98,734 proofs
PISA [14] 138,000 proofs
Natural Proofs [15] 15,000 proofs
Archive of Formal Proofs [16] 1 million lines of code

Unverified program synthesis

APPS [17] 10,000 programs
HumanEvalX [18, 19] 165 programs
MBPP [20] 974 programs
SWEBench [21] 2,294 programs
LiveCodeBench [22] grows weekly

Formal software verification
Clover [9] 66 programs
Dafny-synthesis [10] 153 programs

3 DafnyBench Dataset Construction

3.1 Sourcing Ground Truth Programs

In total, our DafnyBench benchmark contains 782 ground_truth stand-alone Dafny programs that
compile. These problems come from the following sources:

• GitHub Scrape: We scraped all publicly available Dafny files on GitHub published on the
before the end of 2023. The relevant files were returned from the GitHub API using the
language:Dafny search command. We then de-duplicated these files using a minhash de-
duplication script written by Chenghao Mou (described in Appendix A). The de-duplication
process reduced the number of .dfy files from ∼15,000 to ∼5,000. We then attempted
to verify each of these remaining files using the dafny verify command with a local
installation of Dafny 4.3.0, and removed any files that did not verify. At this stage, we
removed all of the files from the Clover repository [9], which had already been formatted
as benchmark files. This left 1,112 files. We found that 374 of these files lacked ensures
statements, and 459 of lacked assert and invariant clauses. We removed the union of
these sets, which left us with 556 ground_truth files. Out of these files, 113 verify without
any compiler hints. To mitigate data contamination, models run on our benchmark should
ideally not be trained on data from the repositories listed in Appendix D.

• Clover: We added 62 ground truth textbook Dafny programs provided by the Clover dataset
[9]. We formatted these to fit our benchmark style and removed their compiler hints. Out of
these files, 23 verify without any compiler hints.

• Dafny-synthesis: Finally, we included 164 Dafny programs provided by the dafny-synthesis
benchmark. These problems have been translated from the MBPP benchmark [10]. Out of
these files, 72 verify without any compiler hints.

The ground_truth programs in our dataset have on average 2.12 methods, 1.03 functions, and 1.40
lemmas. This places the mean complexity of our examples at a level higher than Clover alone, which
has only one stand-alone method per example.
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Table 2: Mean and maximum values that describe attributes of a DafnyBench test program.

Mean Max

# Methods 2.12 42
# Functions 1.03 42
# Lemmas 1.40 35
# Characters 1916.47 28736
# Hint characters 261.23 6019

3.2 Task Design: Fill Hints

We have fully implemented the fill_hints task. For this task, we took a ground_truth program,
removed all of its hints (i.e., all of the assert and invariant statements in the body of the code),
and asked LLM to fill hints back in so that the resulting program could be verified with Dafny.

Figure 1: Overview of evaluating LLM on a DafnyBench test program.

We do not demarcate from where these hints have been removed, i.e., we do not insert /* TODO */
after we remove each annotation, which would make the task easier and not reflective of models
utility in real-world use cases.

Evaluation Metric An LLM’s attempt to fill hints back in for a test program is counted as a success
if all following conditions are satisfied: 1) The reconstructed program is verified with Dafny; 2) LLM
preserves all preconditions (requires statements) and postconditions (ensures statements); and 3)
LLM does not use {:verify false} or {assume false} to "cheat."
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method LinearSearch <T>(a: array <T>, P: T -> bool) returns (n: int)
ensures 0 <= n <= a.Length
ensures n == a.Length || P(a[n])
ensures forall i :: 0 <= i < n ==> !P(a[i])

{
n := 0;
while n != a.Length

invariant 0 <= n <= a.Length
invariant forall i :: 0 <= i < n ==> !P(a[i])

{
if P(a[n]) {

return;
}
n := n + 1;

}
}

Figure 2: An example ground_truth program that is fully verified with Dafny. To create the
fill_hints task, we would remove the invariant lines from the program above.

4 Experiments

In this section, we report success rates for different models on the fill_hints task, as well as
provide some insight into current LLMs’ capabilities at writing hints for formal verification.

4.1 Prompts & Hyperparameters

We tried to keep prompts and hyperparameters mostly the same across models in order to reduce the
difference between model performances that is caused by hyperparameters. However, the prompts
are not fully identical. For example, when we ask LLM to simply return the hints-filled program
without any explanation, Claude 3 tends to add explanations that interfere with Dafny compilation.
Thus, we had to adjust some prompts slightly to fit each model’s peculiarities.

For hyperparameters, we set max_tokens = 4096, which corresponds to the lowest max output
token limit among all the evaluated models, and we set temperature = 0.3. We gave each model
up to n = 10 attempts at a given file. If it succeeded on an attempt before the nth, it would be early
stopped. If the model failed on any of the intermediate attempts, it received the Dafny error message
and was asked to filled in the hints again with the error message taken into consideration. If it failed
on all n attempts, it was considered to fail on that specific test program.

4.2 Basic Results

We tested GPT-4o, GPT-4 Turbo [23], GPT-3.5 Turbo [24], Claude 3 Opus [2], and CodeLlama-7b-
Instruct-hf [25] on the 782-program benchmark. Table 3 shows that Claude 3 Opus performed best,
achieving a success rate ∼ 68%.

4.3 Difficulty Utilizing Dafny Error Messages

Figure 3 shows how the cumulative success rate improved with more attempts n. We see that the best
models succeeded on the first try about 54%, with rapidly diminishing returns after that, approaching
a plateau about 65% for n ∼ 5. This suggests that the LLMs are not great at taking Dafny error
messages into consideration, or struggle to cope with the underlying task.
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Model % Success

No LLM 26.9
GPT-3.5 Turbo 44.0± 1.8
GPT-4 Turbo 59.8± 1.8
GPT-4o 59.3± 1.8
Claude 3 Opus 67.8 ±1.7
CodeLlama-7b-Instruct-hf 28.0± 1.6

Table 3: Models’ success rates at writing for-
mally verifiable hints for DafnyBench, with
n = 10 attempts given. Dafny succeeds in
auto-verifying some programs even without
hints, corresponding to the ªNo LLM" 26.9%
success rate baseline.

Figure 3: Success rate vs. number of
attempts given.

4.4 Difficulty Grows with Program Size

Figure 4a show that the success rate drops with program size. An obvious explanation could be that
there is more to verify and more hints needed. Also, as a program gets longer, there may be more
dependencies among variables, functions, methods, and classes, increasing the overall verification
difficulty level.

4.5 Difficulty Grows with Hint Quantity

Figure 4b shows that the success rate drops with the hint quantity, defined as the number of characters
in the lines of compiler hints. In other words, the success rate drops with the amount of work that the
LLM needs to do (the amount of text that it needs to insert in the right places).

(a) (b)

Figure 4: Mean success rate of each bin vs. program length (a), and mean success rate of each
bin vs. hint quantity (b). The vertical lines indicate the bin boundaries used, where the bins have an
almost uniform distribution of the programs. Note that the bins are different for the two metrics. For
better visual clarity, the scales are adjusted for both plots and their x-axes do not start at 0 character.

5 Discussion and Conclusions

We have assembled the largest machine-learning benchmark to date for formal software verification
and made it publicly available on GitHub at https://github.com/sun-wendy/DafnyBench. We
also tested five large language models on this benchmark, including one open source model.

We found that Claude 3 Opus achieved ∼ 68% accuracy on our benchmark, with even better success
on programs that were shorter or involved less hint text than the benchmark average. GPT-4 Turbo
came second with ∼ 60% accuracy. Meanwhile, CodeLlama-7b-Instruct-hf only achieved a marginal
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improvement in accuracy compared to our "No LLM" baseline. While in certain cases it succeeds in
copying and lightly modifying programs that already verify without compiler hints, it fails to add
compiler hints to programs that don’t verify without them.

5.1 Opportunities for Larger Benchmarks

It will be valuable to further expand formal verification benchmarks, which still remain more than
two orders of magnitude smaller than corresponding benchmarks for mathematical theorem proving.
One convenient way to expand the number of available problems may involve incorporating Dafny
programs from GitHub that have dependencies spread across multiple files (while DafnyBench
encompasses increasingly complex multi-step programs, its programs each fit in a single file, avoiding
the intricacies associated with distributed files or the integration of external libraries).

Perhaps models that perform especially well on this initial benchmark can later be used to expand it
by translating existing Python benchmark problems into Dafny, Rust [26] or other popular formal
verification languages.

A subset of the programs we scraped from GitHub do not have appropriate docstrings. By building
a benchmark with better code documentation, models may be able to leverage helpful contextual
information to better constructing verification hints.

5.2 Benchmark Evaluation Limitations

Data contamination emerges as a potentially significant limitation for evaluating LLMs on this
benchmark. Scraping data from platforms such as GitHub introduces risks of leveraging previous
models’ training data into the benchmark evaluation, potentially artificially inflating the abilities of
certain models.

Another limitation emerges in that this benchmark does not assess a model’s competence in translating
natural language into concise formal specifications. Arguably, this conversion is a demanding and
crucial skill we seek from language models: the capacity to validate, beyond merely verifying code.
The pivotal question is whether a model can assist in identifying the essential properties an algorithm
must fulfill. Currently, evaluating this ability presents significant challenges. The Clover paper stands
as a prominent example in this area, highlighting the complexity of translating natural language
descriptions into formal specifications that can be effectively used for validation. This provides an
exciting frontier for future work, which we begin to brainstorm in Appendix C.

5.3 Opportunities for Improved LLM Results

It will be interesting to test this benchmark on additional LLMs, both existing ones such as Gemini [3]
and Grok [27] and upcoming ones. Furthermore, we evaluated the models with a fixed temperature
setting and a max output token limit of 4096, and we used prompts that were manually but not very
systematically tuned for effectiveness (see Appendix B) Ð all of these choices probably leave room
for improvement.

We do not yet provide an official training dataset or models custom-trained to do well on the
DafnyBench evaluation set. However, we do provide the full json file produced by the GitHub scrape,
and we separately provide the names of the files we use for the evaluation benchmark. Hence it is
possible for researchers to use files from the Github scrape that are not used in the benchmark as
training data, though we cannot at this time provide strong guarantees on similarity between such
training problems and the benchmark problems. Pre-training on this type of data may boost large
language model performance on DafnyBench.

We also see great opportunity for LLM-related innovation on the algorithmic side: out-of-the-box
LLMs provide a floor but not a ceiling for possible performance on this benchmark. For example,
fine-tuning or search-based inference-time algorithms might boost models’ performances on this
benchmark [28].

5.4 The Promise of Better LLM-Powered Verifiers

LLMs also have potential to improve formal verification in more profound ways than mentioned
above, when used in combination with other AI tools. For example, they can help automate the
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identification of sub-goals and hints, exponentially reducing the search space for automated theorem
provers and SAT solvers. A good software developer is likely able to specify the high level assurance
properties of a piece of code. However, in trying to prove that the given code satisfies these high level
properties, numerous, sub-goals must be identified, proven, and leveraged correctly in the broader
context. Software developers often lack familiarity with the complexities of proof sub-goals and hints.
LLMs offer a way to bridge this gap between software developers and formal verification.

Achieving this requires benchmarks suitable for improving the performance and generality of LLMs
with respect to software verification. Bigger, more general benchmarks can be used to train LLMs
to specify sub-goals and hints in formats most useful to the presently available provers and solvers.
Benchmarks covering broad ground, from cryptography, lambda calculus, embedded systems, and
avionics, in a variety of widely used programming languages suitable for verification, will help create
LLMs that can take real-world software, automatically process and serve it to verification tools, and
inform the developer in near real time about the correctness of the code. The problem is analogous to
that solved by existing automated theorem provers and model checkers in the domain of mathematics.
They address the problem, when given a set of constraint formulas or background theorems, whether
a candidate formula is satisfiable or derivable. Many clever algorithms have increased the degree
of automation available to mathematical theorem proving over time. LLMs should be able to help
similarly improve automation for software verification. For a survey on the application of deep
learning to automated theorem proving, see [29].

In order to formally specify a correctness property for a programming language, some formalization
of the lower level language’s semantics must be represented in a higher level specification language.
A lower level language with well-defined semantics to begin with makes this easier. For languages
lacking well-defined semantics, such as C, JavaScript, and Python, a well-defined subset may suffice
[30]. Programming languages fall on a spectrum of well-defined semantics, with higher level
languages like Haskell on one end, and C on the other. Rust falls in a particularly nice intermediate
place, with a strongly typed, functional semantics and macros for achieving side effects. An ecosystem
of formal verification tools has begun to emerge for Rust, due to its nice semantics and popularity as
a practical programming language [31]. A benchmark leveraging this ecosystem for LLMs would
likely compound on this progress dramatically. Multiple formal verification tools compile to Rust or
extract correct Rust code. For example, Dafny can compile to Rust, and other tools for extracting
Rust from Coq exist [32, 33]. In this case, Rust would be considered the low level language, and
Dafny and Coq would serve as candidate specification languages. A workflow might be possible such
that a developer working in Rust could have a LLM assistant that identifies correctness properties for
the code, either automatically or provided at a high level by the developer, and produces appropriate
artifacts for verifying correctness via multiple tools for improved assurance.

5.5 The Promise of Auto-Verifying Program Synthesis

Above we discussed the challenge of verifying existing pre-programs. Anther promising approach is
use program-synthesis techniques that produce not only programs but also proofs of their correctness,
all at the same time. This makes intuitive sense, since when a human programmers writes code, they
typically have an informal proof in their head for why this code is correct.

In other words, in addition to bridging the gap from low level implementation to high level specifica-
tion in the upward direction, LLMs can offer assistance in generating provably correct low level code
from high level specifications via program synthesis. Current approaches to program synthesis enable
engineers to encode a desired specification in a high level language, and then through a (hopefully)
verified correct compiler generate correct low level code in a language like VHDL [34] or Verilog
[35] for hardware synthesis. Indeed, the compilation of Dafny code to Rust or Python is an example
of program synthesis. Program synthesis is limited by the need for a special purpose language or
compiler to be constructed and verified correct in its own right. For example, ReWire is a domain
specific language defined as a subset of Haskell [36]. Using ReWire, engineers can specify hardware
properties and then through the Haskell compiler, synthesize VHDL that is guaranteed to satisfy the
specifications. ReWire itself was manually verified correct using the Coq Interactive Theorem Prover.
In order to add a new high to low path, a new language or compiler must be defined and verified. If
an engineer needs to synthesize correct Verilog rather than VHDL, they must first learn Caisson [37].

LLMs offer a way to generalize this approach. Starting with a high level language, an engineer
might be able to specify a system and then leverage a LLM to generate low level code with the
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corresponding loop invariants, weakest pre-conditions, strongest post-conditions, etc, included.
In the limit, an engineer might be using a natural language to describe the system and its desired
assurance properties, with the LLM performing translation, annotation, and even suggesting additional
correctness properties. Early results indicate that an LLM that is able to converse with a human when
producing a program can reduce the error rate against a simple programming benchmark by half
[20]. If instead of receiving feedback from a human, the LLM were to interact with a suite of formal
verification tools, we expect further improvements. We could avoid hallucination problems by relying
on the LLM to generate the code and formal specification, but relying on an established verification
tool to perform the model checking or proof verification itself. The LLM’s translation process need
not itself be verified, because it can try multiple times to produce a verifiable output. The LLM
must be capable of generating code that is appropriately annotated for theorem proving, which is
exactly the skill assessed by test benches like that described here. The more theorem proving tools
and programming languages that LLMs are trained and assessed on, the more auto-verifying program
synthesis options become available. To return to the previous example, a LLM proficient at ReWire,
Caisson, and myriad other software verification techniques, might be given a ReWire specification as
input and told to produce correct Verilog as output. The ReWire specification contains the high level
correctness properties that must be satisfied. The task is to synthesize Verilog code that satisfies those
same correctness properties specified in Caisson. A strong ability to reason about code properties and
to express them in multiple languages is exactly what is called for here, and what diverse LLM test
benches help to enable.

In summary, there are good reasons for optimism that automated formal verification will soon be
greatly improved.

Acknowledgements: The authors wish to thank Clark Barrett, Rustan Leino, Daniel Windham,
David Brandfonbrener, William Byrd, Josh Engels, and Anastasiya Kravchuk for helpful discussions.
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A The Minhash Deduplication Algorithm

We can think about deduplicating a set of files by finding groups of ªsimilarºfiles and then choosing
only one file representative from each group to form our final deduplicated set of files. To do this, we
can use the Jaccard similarity metric to decide whether one document is a duplicate of another.

The Jaccard similarity metric provides a way to quantify the similarity of two sets. It is defined as
[38]:

J(A,B) =
|A ∩B|

|A ∪B|

In the application to code files, we could consider each file to be a set of n-grams, where an n-gram
is defined as a sequence of n adjacent symbols in a particular order [39], and then apply the Jaccard
score as a similarity metric for our files. To directly calculate this Jaccard score, we would need
to run string comparison on every n-gram, which would have time complexity O

(

nm2
)

if we
have n n-grams each with max length m characters. This turns out to be an inefficient method for
representing each code file as a set. Instead, the minhash deduplication algorithm approximates the
Jaccard similarity between two documents by shingling the documents and comparing the minhash
representation of each set of shingles (i.e. we compare fingerprints of documents instead of full
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documents). The minhash representation of a document is a way to represent a text document as a set
of numbers that is faithful to the structure of its content but with a fixed set size that is smaller than
the total number of n-grams in the document (i.e. the minhash representation of the document is a
form of numerical fingerprint of the document). In Figure 5 below, we provide the pseudocode for
the minhash algorithm used, based entirely on the script in [40]:

function minhash_deduplication(documents , num_permutations , threshold)
:
# Preprocess the documents
for each document in documents:

tokenize the document into n-grams (shingles)
hash each n-gram using a hash function (e.g., xxHash or SHA -1)
store the hashed n-grams in a set

# Generate permutations
for i from 1 to num_permutations:

generate random coefficients a and b
create a permutation function: (a * x + b) % prime_modulus

# Create minhash signatures
signatures = []
for each document in documents:

signature = []
for each permutation function:

min_hash = INFINITY
for each hashed n-gram in the document:

permuted_hash = apply permutation function to hashed n
-gram

min_hash = min(min_hash , permuted_hash)
append min_hash to signature

append signature to signatures

# Perform Locality -Sensitive Hashing (LSH)
# We use 250 permutations , so to achieve Jaccard similarity

threshold of 0.5
# We really only need one band (i.e. one hash table)
num_bands = choose number of bands
rows_per_band = num_permutations / num_bands
candidate_pairs = []
for each band:

create an empty hash table
for each document signature:

band_signature = subset of signature for the current band
hash_bucket = hash(band_signature)
add document to the corresponding hash bucket

for each hash bucket:
if number of documents in the bucket > 1:

generate all pairs of documents in the bucket
add pairs to candidate_pairs

Figure 5: Pseudocode for the minhash deduplication algorithm.

Note that the probability two files have the same min hash value under the same hash function is
equivalent to their Jaccard similarity. Concretely, for file A and file B:

Pr [ minhi(A) = minhi(B) ] = J(A,B)

where minhi() denotes taking the minimum hash value under hash function hi. This makes sense
because, assuming negligible hash collision, Pr [minhi(A) = minhi(B)] is equivalent to the proba-
bility that the first n-gram hash of A under hi is equal to the first n-gram hash of B under hi. If hi is
a good hash function, then it uniformly distributes the hash values of the original n-gram hashes over
the range of hi. Let c denote the number of n-grams with equivalent hashes; let a denote the number
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# Use a union -find datastructure to track groups of duplicates
duplicates = UnionFind ()
for each band:

for each row in hashtable:
for each hash_bucket:

if size(hash_bucket) <= 1:
continue

else:
cluster_id = min(hash_bucket)
for x in hash_bucket:

duplicates.union(x, cluster_id)

# Perform deduplication
deduplicated_documents = []
for each document in documents:

if duplicates.find_root(document) = document:
add document to deduplicated_documents

return deduplicated_documents

Figure 5: Pseudocode for the minhash deduplication algorithm (continued).

of n-grams from A with smaller hash values than the hash value of corresponding n-gram from B; let
b denote the reverse of the previous category. Then, Pr [minhi(A) = minhi(B)] = c

a+b+c
, given

the uniformity of h1. Note that c

a+b+c
= |A∩B|

|A∪B| = J(A,B).

B Prompt Engineering for Hint Reconstruction

We based our prompts on the prompts used in the Clover benchmark [9].

B.1 GPT Model Famly

SYSTEM_PROMPT = "You are an expert in Dafny. You will be given tasks dealing
with Dafny programs including precise annotations."

USER_PROMPT = "Given a Dafny program with function signature, preconditions,
postconditions, and code, but with annotations missing.
Please return a complete Dafny program with the strongest
possible annotations (loop invariants, assert statements,
etc.) filled back in. Do not explain. Please use exactly the
same function signature, preconditions, and postconditions.
Do not ever modify the given lines. Below is the program:"

B.2 Claude 3 Opus

SYSTEM_PROMPT = "You are an expert in Dafny. You will be given tasks dealing
with Dafny programs including precise annotations. You should
only return code body in all circumstances. No text is allowed."

USER_PROMPT = "Given a Dafny program with function signature, preconditions,
postconditions, and code, but with annotations missing.
Please return a complete Dafny program with the strongest
possible annotation (loop invariants, assert statements,
etc.) filled back in. Do not explain or output any text. If
you have to explain, put all explanations in comments form.
There should only be code body in your output. Please use
exactly the same function signature, preconditions, and
postconditions. Do not ever modify the given lines. Below
is the program:\n‘‘‘dafny\n"
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B.3 CodeLlama-7b-Instruct-hf

The prompts for CodeLlama-7b-Instruct-hf are the same as those in B.2.

C Proposals for Evaluating Strength of Generated Specifications

The evaluation of models’ capability to generate formal specifications might be enhanced by integrat-
ing the process with the creation of positive and negative test cases for each Dafny implementation.
This approach proposes a reward system where models are evaluated based on the number of positive
test cases their formal specifications support and the number of negative test cases they successfully
reject. However, this method introduces a new challenge: ensuring the test cases accurately reflect the
comprehensive meaning intended in the natural language descriptions. The consistency and validity
of these test cases become critical, raising questions about the methods used to generate and verify
them.

D Repositories of Scraped Dafny Code

We provide a full list of all repositories whose data we used in the scraped portion of DafnyBench in
Tables 4, 5, 6. When reporting the license information, "Renamed so N/A" implies that the original
repository we scraped in December 2023 no longer exists under that name. Otherwise, the repositories
have either Microsoft open-source licenses, MIT licenses, GNU General Public License v3.0 licenses,
Creative Commons Zero v1.0 Universal, Apache 2.0 licenses, or "Other" (which is secretly an MIT
License in a strange format, which has been checked manually). In light of this, we release our
derivative DafnyBench repository under an Apache 2.0 license and a GNU General Public License
v3.0. We note explicitly here that all files from repositories with the Apache 2.0 license have been
modified from their original form.

E Dafny Verification Examples

We take one example test program from DafnyBench, and consider four possible results for the
corresponding LLM-reconstructed program: successfully verifies, fails to verify, cheats by including
assume false, and cheats by including {:verify false}. The last three cases are all considered
a fail by the DafnyBench evaluation metric.

E.1 Successful Example

Figure 6 shows a Dafny program that is considered to have successfully verified without cheating.

Dafny verifier message: Dafny program verifier finished with 3 verified, 0 errors.

E.2 Failed Example

Figure 7 shows a Dafny program that fails to be verified.

Dafny verifier message: (20,11): Error: index out of range. (30,4): Error: a postcondition could not
be proved on this return path. (11,28): Related location: this is the postcondition that could not be
proved. Dafny program verifier finished with 2 verified, 2 errors.

E.3 Cheat Example

Figure 8 shows that a Dafny program cheats by including assume false, which DafnyBench
evaluation would count as a fail.

Dafny verifier message: Dafny program verifier finished with 3 verified, 0 errors.

E.4 Another Cheat Example

Figure 9 shows that another Dafny program cheats by including {:verify false}, which Dafny-
Bench evaluation would count as a fail.
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Table 4: Repositories from which DafnyBench utilizes scraped code (no particular order).

Repository Name License

dafl No license provided
Dafny-Grind75 No license provided
feup-mfes MIT License
Dafny GNU General Public License v3.0
nitwit MIT License
Dafny-experiences No license provided
Formal_Verification_With_Dafny No license provided
SENG2011 No license provided
M2 No license provided
assertive-programming-assignment-1 No license provided
t1_MF No license provided
dafny-exercise Other
dafny-learn No license provided
software-specification-p1 No license provided
FMSE-2022-2023 The Unlicense
fv2020-tms No license provided
type-definition No license provided
laboratory No license provided
dafny GNU General Public License v3.0
TFG GNU General Public License v3.0
SiLemma MIT License
dafny-training No license provided
FormalMethods No license provided
dafny_misc MIT License
vmware-verification-2023 No license provided
CSU55004ÐFormal-Verification No license provided
MIEIC_mfes MIT License
Dafny-programs No license provided
MFES_2021 MIT License
DafnyPrograms No license provided
cs357 No license provided
formal-methods-in-software-engineering No license provided
Dafny_ProgrammingLanguages No license provided
CSC8204-Dafny No license provided
BPTree-verif No license provided
tangent-finder No license provided
Trab1-Metodos-Formais No license provided
verified-using-dafny MIT License
Metodos_Formais No license provided
lets-prove-blocking-queue Creative Commons Zero v1.0 Universal
Dafny_Programs No license provided
dafny-workout MIT License
Dafny-Projects No license provided
VerifiedMergeSortDafny No license provided
dafny_projects No license provided
pucrs-metodos-formais-t1 No license provided
specTesting No license provided
QS_BoilerPlate1 No license provided
dafny-sandbox No license provided
Formal-Verification No license provided
dafny-duck No license provided
FlexWeek No license provided
703FinalProject No license provided
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Table 5: Repositories from which DafnyBench utilizes scraped code (no particular order), continued.

Repository Name License

MFS No license provided
dafny-mini-project No license provided
Software-Verification No license provided
circular-queue-implemetation No license provided
Final-Project-Dafny No license provided
DafnyProjects No license provided
bbfny No license provided
Formal-methods-of-software-development No license provided
Software-building-and-verification-Projects No license provided
software_analysis No license provided
cs245-verification No license provided
dafny-aoc-2019 No license provided
ProjectosCVS No license provided
MFDS MIT License
groupTheory No license provided
dafny-language-server Other
Invoker Apache License 2.0
formal-verification No license provided
dafny-programs No license provided
ironsync-osdi2023 Other
verified-isort No license provided
paxos_proof No license provided
se2011 No license provided
Dafny_Verify No license provided
Formal-Methods-Project No license provided
630-dafny No license provided
dafny_examples MIT License
Workshop No license provided
Dafny-Practice MIT License
CVS-handout1 No license provided
CS494-final-project No license provided
iron-sync Other
stunning-palm-tree Creative Commons Zero v1.0 Universal
sat_dfy No license provided
verification-class MIT License
AssertivePrograming No license provided
Dafny-VMC MIT License
libraries Other
cmsc433 No license provided
Correctness No license provided
CVS-Projto1 No license provided
dafleet MIT License
dafny-rope MIT License
protocol-verification-fa2023 No license provided
vfag No license provided
Dafny_Learning_Experience Apache License 2.0
summer-school-2020 No license provided
BinarySearchTree Renamed so N/A
llm-verified-eval MIT License
Programmverifikation-und-synthese Renamed so N/A
Prog-Fun-Solutions Renamed so N/A
CO3408-Advanced-Software-Modelling-Assignment... Renamed so N/A
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https://github.com/tegbesemirone/CS494-final-project
https://github.com/secure-foundations/iron-sync
https://github.com/benjaminfjones/stunning-palm-tree
https://github.com/johnterickson/sat_dfy
https://github.com/GLaDOS-Michigan/verification-class
https://github.com/noalero/AssertivePrograming
https://github.com/dafny-lang/Dafny-VMC
https://github.com/dafny-lang/libraries
https://github.com/lamula21/cmsc433
https://github.com/FaizAther/Correctness
https://github.com/VicentF/CVS-Projto1
https://github.com/Nangos/dafleet
https://github.com/SwampertX/dafny-rope
https://github.com/tchajed/protocol-verification-fa2023
https://github.com/olrodr03/vfag
https://github.com/PaddyZz/Dafny_Learning_Experience
https://github.com/wenhuizhang/summer-school-2020
 https://github.com/namin/llm-verified-with-monte-carlo-tree-search


Table 6: Repositories from which DafnyBench utilizes scraped code (no particular order), continued.

Repository Name License

DafnyExercises No license provided
test-generation-examples No license provided
HATRA-2022-Paper No license provided
veri-sparse No license provided
Formal-Verification-Project No license provided
formal_verication_dafny No license provided
Simulink-To_dafny No license provided
dafny_experiments No license provided
cs686 No license provided
Program-Verification-Dataset MIT License
Dafny-demo No license provided
dafny-exercises No license provided
metodosFormais No license provided
CS5232_Project No license provided
Dafny-Exercises No license provided

function sorted(a: array <int >) : bool
reads a

{
forall i,j : int :: 0 <= i < j < a.Length ==> a[i] <= a[j]

}

method BinarySearch(a: array <int >, x: int) returns (index: int)
requires sorted(a)
ensures 0 <= index < a.Length ==> a[index] == x
ensures index == -1 ==> forall i : int :: 0 <= i < a.Length ==> a[

i] != x
{

var low := 0;
var high := a.Length - 1;
var mid := 0;

while (low <= high)
invariant 0 <= low <= high + 1 <= a.Length
invariant x !in a[..low] && x !in a[high + 1..]

{
mid := (high + low) / 2;
if a[mid] < x {

low := mid + 1;
}
else if a[mid] > x {

high := mid - 1;
}
else {

return mid;
}

}
return -1;

}

Figure 6: An example response that successfully fills hints back in and verifies without cheating.

Dafny verifier message: Dafny program verifier finished with 3 verified, 0 errors.
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function sorted(a: array <int >) : bool
reads a

{
forall i,j : int :: 0 <= i < j < a.Length ==> a[i] <= a[j]

}

method BinarySearch(a: array <int >, x: int) returns (index: int)
requires sorted(a)
ensures 0 <= index < a.Length ==> a[index] == x
ensures index == -1 ==> forall i : int :: 0 <= i < a.Length ==> a[

i] != x
{

var low := 0;
var high := a.Length - 1;
var mid := 0;

while (low <= high)
{

mid := (high + low) / 2;
if a[mid] < x {

low := mid + 1;
}
else if a[mid] > x {

high := mid - 1;
}
else {

return mid;
}

}
return -1;

}

Figure 7: An example response that fails to be verified, as it lacks necessary invariant statements.

F Overdetailed Specification

Figures 10 and 11 show two example programs update_array_strong.dfy and
triple_strong.dfy from the Clover benchmark [9], in which the formal specification
closely echoes the program implementation.

G Ethics Statement

In creating DafnyBench, we took care to use only data that was publicly available on GitHub,
and we reference every repository from which we acquired this data, along with their licenses, in
Appendix D. Furthermore, we cite the existing verifiable programming benchmarks that we subsume
in DafnyBench (i.e. Clover [9] and dafny-synthesis [10]), and we asked explicit permission from their
authors in order to do so. Finally, we cite all models that were used for evaluations on this benchmark
[23, 24, 2, 25]. We used these models in accordance with the policies set forth in their API and model
card documentation.

H Reproducibility Statement

Our benchmark contains the 782 ground_truth programs and the corresponding hints_removed
programs. Additionally, we include full metadata on all of these files and the evaluation scripts
necessary for running the listed models on them. By using the OpenAI and Anthropic APIs, others
looking to reproduce this work should not expect to spend more than $300 for a full run of GPT4-o
on DafnyBench, $300 for a full run of Claude3 on DafnyBench, $500 for a full run of GPT4-turbo
on DafnyBench, and $400 for a full run of GPT-3.5 on DafnyBench. We used the sglang package
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function sorted(a: array <int >) : bool
reads a

{
forall i,j : int :: 0 <= i < j < a.Length ==> a[i] <= a[j]

}

method BinarySearch(a: array <int >, x: int) returns (index: int)
requires sorted(a)
ensures 0 <= index < a.Length ==> a[index] == x
ensures index == -1 ==> forall i : int :: 0 <= i < a.Length ==> a[

i] != x
{

assume false;
var low := 0;
var high := a.Length - 1;
var mid := 0;

while (low <= high)
{

mid := (high + low) / 2;
if a[mid] < x {

low := mid + 1;
}
else if a[mid] > x {

high := mid - 1;
}
else {

return mid;
}

}
return -1;

}

Figure 8: An example response that cheats by including assume false.

[41] to efficiently query the models. All evaluations were completed on a Linux cluster with an A100
Nvidia GPU.
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function sorted(a: array <int >) : bool
reads a

{
forall i,j : int :: 0 <= i < j < a.Length ==> a[i] <= a[j]

}

method {: verify false} BinarySearch(a: array <int >, x: int) returns (
index: int)
requires sorted(a)
ensures 0 <= index < a.Length ==> a[index] == x
ensures index == -1 ==> forall i : int :: 0 <= i < a.Length ==> a[

i] != x
{

var low := 0;
var high := a.Length - 1;
var mid := 0;

while (low <= high)
{

mid := (high + low) / 2;
if a[mid] < x {

low := mid + 1;
}
else if a[mid] > x {

high := mid - 1;
}
else {

return mid;
}

}
return -1;

}

Figure 9: An example response that cheats by including {:verify false}.

method UpdateElements(a: array <int >)
requires a.Length >= 8
modifies a
ensures old(a[4]) +3 == a[4]
ensures a[7]==516
ensures forall i::0 <= i<a.Length ==> i != 7 && i != 4 ==> a[i] ==

old(a[i])
{

a[4] := a[4] + 3;
a[7] := 516;

}

Figure 10: An example program update_array_strong.dfy from the Clover benchmark [9], in
which the formal specification closely echoes the program implementation.

method Triple (x:int) returns (r:int)
ensures r==3*x

{
r:= x*3;

}

Figure 11: Another example program triple_strong.dfy from the Clover benchmark [9], in
which the formal specification closely echoes the program implementation.
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