1202.6583v1 [cs.CL] 29 Feb 2012

arxXiv

A Lexical Analysis Tool with Ambiguity Support

Luis Quesada, Fernando Berzal, and Francisco J. Cortijo
Department of Computer Science and Artificial Intelligence, CITIC, University of Granada,

Granada 18071, Spain

lquesada@decsai.ugr.es, fberzal@decsai.ugr.es, cb@decsai.ugr.es

Lexical ambiguities naturally arise in languages. We present Lamb, a lexical analyzer that pro-
duces a lexical analysis graph describing all the possible sequences of tokens that can be found
within the input string. Parsers can process such lexical analysis graphs and discard any sequence
of tokens that does not produce a valid syntactic sentence, therefore performing, together with
Lamb, a context-sensitive lexical analysis in lexically-ambiguous language specifications.

I. INTRODUCTION

A lexical analyzer, also called lexer or scanner, is a piece
of software that processes an input string conforming to
a language specification and produces a sequence of the
tokens or terminal symbols found in it. The obtained
sequence of tokens is then usually fed to a parser or syn-
tactic analyzer as the next step of a data translation,
compilation or interpretation procedure.

Sometimes, lexical ambiguities may show up in a lan-
guage specification. Lexical ambiguities occur when an
input string simultaneously corresponds to several token
sequences [9].

The traditional way of choosing a sequence amongst
potential alternatives [6] involves assigning an unique pri-
ority to each token. This causes that, when the regular
expressions associated to two different tokens match the
same fragment of the input string, only the one with the
greater priority will be considered.

However, the language developer may want similar
substrings to be recognized as different sequences of to-
kens depending on their context. This cannot be achieved
with the unique priority approximation.

Statistical lexical analyzers also exist [7]. Although
statistical models may perform well in context-sensitive
scenarios, they require intensive training and, as token
types are actually guessed, they do not formally guaran-
tee that the obtained token sequence will be what the
developer intended.

When it comes to programming languages, data spec-
ification languages, or limited natural languages scenar-
ios, the syntactic rules are clear as to what should be
accepted. The usage of statistical models introduces an
unpredictable possibility of error during token recogni-
tion that would render scanning and parsing theoretically
and pragmatically unfeasible.

Our proposal, Lamb (standing for Lexical AMBiguity),
performs a lexical analysis that efficiently captures all the
possible sequences of tokens and generates a lexical anal-
ysis graph that describes them all. A subsequent parsing
process discards any sequence of tokens that does not
provide a valid syntactic sentence conforming to the syn-
tactic rule set of the language specification. This solves
the lexical ambiguity problem with formal correctness.

Therefore, Lamb allows language developers to spec-
ify more complex languages than traditional techniques.
Token priorities are still supported but their usage is op-
tional. Several tokens may be set to share the same pri-
ority if the developer wants ambiguities involving them
to be considered.

As research in lexical analyzers sets the basis for the
application of parsers, it inherits their application fields:
the compilation or interpretation of source code written
in programming languages [1], the interpretation and in-
tegration of data in data mining applications 4], and
natural language processing [3].

1. BACKGROUND

The TEEE POSIX P1003.2 standard describes the re-
quirements of the lez and yace tools [6], which are a
traditional lexical analyzer generator and a traditional
syntactic analyzer generator, respectively. Implementa-
tions of these tools are typically used in conjunction:

e Lex generates a lexer that takes as input a set of to-
ken types, associated regular expressions [12], and
the string to be scanned; and produces the sequence
of tokens found in the string.

e Yacc generates a parser that takes as input the se-
quence of tokens and a syntactic rule set; and pro-
duces a parse tree.

Regarding ambiguities, lex enforces the assignment of
unique priorities to each token. Indeed, tokens are tried
and matched in the very same order they have been spec-
ified.

The order of efficiency of a lex-generated lexical ana-
lyzer is O(n), being n the input string length.

The example lez specification in Figure[Ilshows an ex-
ample of implicitly reserved words, as the words “true”,
“false”, “if”, or “while” will not be considered identifiers,
because they will match BOOLEAN, IF, or WHILE to-
kens before reaching the regular expression for IDEN-
TIFIER. Therefore, it is not possible for lex to consider
these words as identifiers in some contexts, even if syntac-
tic rules make clear whether occurrences of these words
should be considered as identifiers or not.

http://arxiv.org/abs/1202.6583v1

Statistical models as Hidden Markov Models |2, 7, [10],
Hierarchical Hidden Markov Models [3], or Maximum
Entropy Markov Models [§] consider the existence of im-
plicit relationships between words, symbols, or characters
that are close together in strings.

These models need intensive corpus-based training and
they produce results with associated implicit probabili-
ties.

It should be noted that, even though they can per-
form well in natural language processing, their training
requirement is impractical for programming or data rep-
resentation languages, especially when the syntactic rules
provide all the needed context information to unequivo-
cally identify tokens. Furthermore, the results are prone
to interpretation errors that would render the analysis
unusable.

The semi-syntactic lexical analyzer proposed in [11]
brings some of the context information found in the syn-
tactic rule set to the deterministic finite automaton that
perform the lexical analysis. Although this technique
considers context information found in syntactic rules, it
is not able to capture syntactic ambiguities for its further
consideration, since the minimal automaton needed to do
this is a non-deterministic finite automaton, which would
have increased complexity of the algorithm. Therefore, if
the lexical ambiguities may cause syntactic ambiguities
or, in other words, there are several syntactic interpre-
tations of the input string due to lexical ambiguities, a
Shyu-like lexer would be unable to find them.

. LAMB

In contrast to the aforementioned techniques, Lamb is
able to recognize and capture lexical ambiguities.

Our proposed algorithm takes as input the string to
be scanned and a list of tokens associated to their corre-
sponding regular expressions. It produces, as output, a
lexical analysis graph, in which each token is connected to
its following and preceding tokens in the input sequence.

Our algorithm consists of two steps: the scanning step,
which recognizes all the possible tokens in the input
string; and the graph generation step, which computes
the sets of preceding and following tokens for each token
and builds the resulting lexical analysis graph.

A. The Scanning Step

The pseudocode for the scanning step is shown in Figure

Our algorithm receives an input string called input and
a list of matchers called matcherlist. Each matcher con-
sists of a regular expression and its corresponding match
method, a priority value, and a next value.

The match method tries to perform a match given the
input string and a starting position in it.

The priority value specifies the matcher priority. The

if return(IF);

while return(WHILE) ;
true|false return (BOOLEAN) ;
[_La-zA-Z]+ return(IDENTIFIER) ;

Figure 1 Example lex specification with implicitly reserved
words (“true”, “false”, “if”, and “while”).

value 0 is reserved for ignored patterns, which are pat-
terns that represent text that does not correspond to to-
kens. Then, priority values for relevant token start at
1, being the lower the value, the higher the priority. If
two tokens share the same priority value, the lexer will
capture both of them if they overlap due to lexical am-
biguities. If two tokens have distinct priority values and
they start at the same position in the input string, only
the greater priority token will be considered.

The nezt value specifies the position before the next
string position a matcher will be tried at. It defaults to
-1, so every matcher will be tried at the 0 position.

The prio variable represents the last priority that has
been matched in the current input position. Its value is
-1 if no match has been made, 0 if an ignored element
match has been made, and a higher value if any token of

for i in O..input.length()-1:

prio = -1
for each matcher m in matcherlist:
if (prio >= m.prio || prio == -1) &&

(prio !'= 0 && next[j] < i):
match = m.match(input,i)
if match != null:
priority = matcher.priority
if m.isignore==false:
t = new token(

id = id,
type = matcher.type,
text = match,
start = i,
end = i+match.length()-1
)
tokenlist.add(t)
id++

min = i+match.length()-1
for each matcher n in matcherlist:
if n.next <= min && n.next >= i:
min = n.next
if n.next > m.next:
n.next = i+match.length()-1
if i >= min:
min = i
m.next = min
for each matcher n in matcherlist:
if n.prio > m.prio:
n.next = min

Figure 2 Pseudocode of the scanning step in our lexical anal-
ysis algorithm.

for i in tokenlist.size()-1..0:
t = tokenlist[i]
for j in i+1..tokenlist.size()-1:
tc = tokenlist[j]
if (tc.start > t.end &%
(tc.prevstart==tc.start ||
(tc.prevstart<tc.start &&
tc.prevstart<t.end))):
t.addfollowing(tc)
tc.addpreceding(t)
tc.prevstart = min(t.start,
tc.prevstart)

Figure 3 Pseudocode of the graph generation step in our lex-
ical analysis algorithm.

that specific priority has been identified.

The min variable is computed in order to determine the
next position the current matcher will be tried at, and
its value is the minimum of either the ending position of
the found token or the ending position of any tokens that
end before it.

This algorithm step has a theoretical order of efficiency
of O(n? - 1), being n the input string length and [the
number of matchers in the lexer.

B. The Graph Generation Step

The algorithm pictured in Figure B goes through the
identified token list in reverse order and efficiently com-
putes the sets of preceding and following tokens for every
token.

The sets of preceding and following tokens of the token
z are defined in Equation[I] being a, b, ¢ tokens and s,
and Z¢nq the starting and ending positions of the token
z in the input string.

b eFOLLOWING(a),a € PRECEDING(b) iif

end < bstart & ﬂc, Cstart > Qend, Cend < bstart

The prevstart variable in the pseudocode avoids the
need of iterating through the token list to find out if there
is any token between two particular tokens, because it
represent the starting position values of preceding tokens,
given a certain token.

After the following and preceding sets have been com-
puted for every token, any token whose preceding set is
empty is added to the start token set of the lexical anal-
ysis graph.

The graph generation has a theoretical order of effi-
ciency of O(t?), being t the number of tokens found. As
t < n -, the theoretical order of efficiency of this step is
O(n?-12).

Both scanning and graph generation steps together
have an order of efficiency of O(n? - [?).

do:
flag = false
for each rule r in rules:
for each token t in tokenlist:
matches = r.match(t)
if matches.size() != O:
for each match m in matches:
if !tokenlist.contains(m):
tokenlist.add (m)
if m is start symbol
start.add(m)
flag = true
while flag = true

Figure 4 Pseudocode of the proof of concept parser support-
ing ambiguities.

IV. COMPARISON

In order to perform a formal comparison of traditional
techniques and Lamb, we have implemented a simple
(and inefficient) proof of concept parser that supports
ambiguities and allows a lexical analysis guided by a syn-
tactic rule set. This parser returns as many parse trees
as they can be obtained by applying a set of syntactic
rules to a lexical analysis graph.

Its pseudocode is shown in Figuredl It iteratively tries
to match every rule starting from every existing token
and following any possible token path, and it adds the
newly found tokens to the list until no new tokens have
been found in an iteration.

Given a language specification that describes the to-
kens listed in Figure[IQ] the input string “&5.2& /25.20/”
can correspond to the four different lexical analysis alter-
natives enumerated in Figure [[Il depending on whether
the sequences of digits separated by points are considered
real numbers or integer numbers separated by points.

The syntactic rules shown in Figure[12]illustrate a sce-
nario of lexical ambiguity sensitivity. Depending on the
surrounding tokens, which may be either Ampersand to-
kens or Slash tokens, the sequences of digits separated by
points should be considered either Real tokens or Integer
Point Integer token sequences. The expected results of
analyzing the input string “&5.2& /25.20/” is shown in
Figure

In order to resolve the ambiguities when using a lex-
alike lexer, the developer can assign the Integer token
a greater priority than the Real token. In that case,
the only valid interpretation would be the one shown in
Figure The developer can also assign the Real token
a greater priority than the Integer token. In that case,
the only valid interpretation would be the one shown in
Figure [l Therefore, lex-alike lexers cannot produce the
token sequence that is needed to parse strings that belong
to our language with lexical ambiguities.

Nonetheless, as Lamb is able to capture all the possible
token sequences in the form of a lexical analysis graph,
as shown in Figure [the later application of a parser

Ampersand Redl
& 5.2

Figure 5 Intended lexical analysis.

Ampersand
&

Figure 6 Lexical analysis, as produced by lez-alike lexers, when Integer tokens are assigned greater priority than Real tokens.

Figure 7 Lexical analysis, as produced by lez-alike lexers, when Real tokens are assigned greater priority than Integer tokens.

Figure 8 Lexical analysis, as produced by Lamb, when Real and Integer tokens share priority value.

Ampersand
&

Figure 9 Correct syntactic analysis produced by applying an ambiguity-supporting parsing technique to the lexical analysis
graph produced by Lamb and shown in Figure 8l

(-=I\+)?[0-9]+ Integer
(=1\+)?[0-9]1+\. [0-9]+ Real

\. Point

\/ Slash

\& Ampersand

Figure 10 Regular expressions and token names in the speci-
fication of our ambiguous language.

e Ampersand Integer Point Integer Ampersand
Slash Integer Point Integer Slash

e Ampersand Integer Point Integer Ampersand
Slash Real Slash

e Ampersand Real Ampersand Slash Integer Point
Integer Slash

e Ampersand Real Ampersand Slash Real Slash

Figure 11 Different possible token sequences in an input
string due to the lexically-ambiguous language specification
in Figure IOl

E::=AB
:= Ampersand Real Ampersand
= Slash Integer Point Integer Slash

o =
|

Figure 12 Context-sensitive syntactic rules to resolve lexical
ambiguities.

supporting lexical ambiguities will produce the only pos-
sible valid sentence, which, in turn, is based on the only
valid lexical analysis possible. Both of them are shown
in Figure

Even though statistical models as Hidden Markov
Models may produce correct results in similar situations,
they cannot be used for this kind of language specifica-
tions, where the specification states how each token is to
be recognized. Besides, their results may not be always
accurate, which difficults formally proving their correct-
ness in a well-defined setting.

V. CONCLUSIONS

We have presented a lexical analyzer, Lamb, that sup-
ports lexical ambiguities. It performs a lexical analysis
that efficiently captures all the possible sequences of to-
kens for lexically-ambiguous languages and it generates
a lexical analysis graph that describes them all. Lamb
supports assigning priorities to tokens as traditional tech-
niques do but, in contrast to them, it does not enforce

these priorities to be set and it allows for priority values
to be shared. Tokens with shared priorities are consid-
ered valid alternatives instead of mutually-exclusive op-
tions.

The lexical graph can be then fed as input to a parser,
which will discard any sequence of tokens that does not
produce a valid syntactic analysis. In summary, our pro-
posal performs a context-sensitive lexical analysis guided
by syntactic rules and supports lexically-ambiguous lan-
guage specifications.

References

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D.
Ullman. Compilers: Principles, Techniques, and Tools.
Addison Wesley, 2nd edition, 2006.

[2] Yariv Ephraim and Neri Merhav. Hidden markov pro-
cesses. IEEE Transactions on Information Theory,
48:1518-1569, 2002.

[3] Shai Fine, Yoram Singer, and Naftali Tishby. The hierar-
chical hidden markov model: Analysis and applications.
Machile Learning, 32:41-62, 1998.

[4] Jiawei Han, Micheline Kamber, and Jian Pei. Data Min-
ing: Concepts and Techniques. The Morgan Kaufmann
Series in Data Management Systems. Morgan Kaufmann,
2nd edition, 2005.

[5] Daniel Jurafsky and James H. Martin. Speech and Lan-
guage Processing: An Introduction to Natural Language
Processing, Computational Linguistics and Speech Recog-
nition. Prentice Hall, 2nd edition, 2008.

[6] John R. Levine, Tony Mason, and Doug Brown.
lex&yacc. O’Reilly, 2nd edition, 1992.

[7] Andrey Andreyevich Markov. Ezxtension of the limit theo-
rems of probability theory to a sum of variables connected
in a chain. R. Howard, Dynamic Probabilistic Systems
volume 1, Appendix B. John Wiley and Sons, 1971.

[8] Andrew McCallum, Dayne Freitag, and Fernando
Pereira. Maximum entropy markov models for informa-
tion extraction and segmentation. In Proc. of the 17th In-
ternational Conference on Machine Learning, pages 591—
598, 2000.

[9] J. R. Nawrocki. Conflict detection and resolution in a lex-
ical analyzer generator. Information Processing Letters,
38:323-328, 1991.

[10] Lawrence R. Rabiner. A tutorial on hidden markov mod-

els and selected applications in speech recognition. In
Proceedings of the IEEE, volume 77, pages 257—286, 1989.

[11] Yuh-Huei Shyu. From semi-syntactic lexical analyzer to
a new compiler model. ACM SIGPLAN Notices, 21:149—
157, 1986.

[12] Michael Sipser. Introduction to the Theory of Computa-
tion. Course Technology, 2nd edition, 2005.

